Indicadores para avaliações de ecossistemas na ação 5 da estratégia da biodiversidade da ue até 2020
Um quadro de indicadores para avaliar os serviços dos ecossistemas em apoio da Estratégia da UE em matéria de biodiversidade até 2020.
Destaques.
Os Estados-Membros da UE devem mapear e avaliar ecossistemas e seus serviços (MAES).
Apresentamos o modelo conceitual MAES que liga a biodiversidade ao bem-estar humano.
Tipologias de ecossistemas e seus serviços garantem a comparabilidade entre os países.
Apresentamos uma lista de indicadores que podem ser usados para avaliações nacionais do MAES.
Nós discutimos criticamente as lacunas de dados e os desafios das tipologias do MAES.
Na UE, o mapeamento e avaliação dos ecossistemas e seus serviços, abreviados para o MAES, é visto como uma ação chave para o avanço dos objetivos de biodiversidade e também para informar o desenvolvimento e implementação de políticas relacionadas sobre água, clima, agricultura, floresta Planejamento marinho e regional. Neste estudo, apresentamos o desenvolvimento de um quadro analítico que garanta que abordagens consistentes sejam usadas em toda a UE. É enquadrado por um amplo conjunto de questões políticas fundamentais e estruturado em torno de um quadro conceitual que une as sociedades humanas e seu bem-estar com o meio ambiente. Em seguida, este quadro é testado através de quatro estudos-piloto temáticos, incluindo partes interessadas e especialistas a diferentes escalas e níveis de governança, que contribuíram com indicadores para avaliar o estado dos serviços ecossistêmicos. Os indicadores foram classificados de acordo com diferentes critérios e variados por tipo de ecossistema e serviços ecossistêmicos, utilizando a classificação internacional comum de serviços ecossistêmicos (CICES) como tipologia. Concluímos que existe o potencial de desenvolver uma primeira avaliação do ecossistema a nível da UE com base nos dados existentes se forem combinados de forma criativa. No entanto, as lacunas de dados substanciais continuam a ser preenchidas antes de uma avaliação ecossistêmica totalmente integrada e completa poder ser realizada.
Instituto de Ciências Marinhas (ICM-CSIC), Barcelona, Espanha.
Endereço atual: Recursos naturais e meio ambiente, CSIR, Stellenbosch, África do Sul.
Endereço atual: Université de Brest, Brest, França.
Avaliações nacionais do ecossistema na Europa: uma revisão.
As avaliações nacionais dos ecossistemas constituem uma base de conhecimento essencial para a salvaguarda da biodiversidade e dos serviços ecossistêmicos. Analisamos oito avaliações de ecossistemas (sub-) nacionais (Portugal, Reino Unido, Espanha, Noruega, Flandres, Holanda, Finlândia e Alemanha) e comparamos seus objetivos, contexto político, métodos e operacionalização. Observamos diferenças notáveis na amplitude da avaliação, métodos empregados, variedade de serviços considerados, mandatos políticos e mecanismos de financiamento. A biodiversidade e os serviços ecossistêmicos são avaliados principalmente de forma independente, com a biodiversidade conceituada como serviços subjacentes, como fonte de conflito com os serviços, ou como um serviço em si. As recomendações derivadas de nossa análise para futuras avaliações dos ecossistemas incluem as necessidades para melhorar a base de evidências comuns, avançar o mapeamento de serviços, considerar os fluxos internacionais de serviços e se conectar mais fortemente às questões políticas. Embora a especificidade do contexto das avaliações nacionais dos ecossistemas seja reconhecida como importante, uma maior harmonização em todas as avaliações poderá ajudar a informar melhor as políticas europeias comuns e futuras avaliações pan-regionais.
Para garantir a biodiversidade e os serviços que os ecossistemas fornecem aos seres humanos, as avaliações nacionais do ecossistema (NEA) formam uma base de conhecimento essencial para informar a tomada de decisões em políticas e práticas. Globalmente, o Plano Estratégico para a Biodiversidade da Convenção sobre Diversidade Biológica (CBD 2018) inclui serviços de ecossistemas (ES) como uma lógica de política em um amplo conjunto de metas. O objetivo estratégico do alvo Aichi D, por exemplo, declara a # x0201c; melhora os benefícios para todos da biodiversidade e dos serviços ecossistêmicos. & # X0201d; A nível europeu, a Estratégia de Biodiversidade da UE estabelece metas específicas dedicadas à ES e exige que os Estados membros façam um mapa e avaliem o estado dos ecossistemas e seus serviços em seu território nacional; # x0201d; e integrar esses valores em sistemas de contabilidade e relatórios a nível da UE e nacional até 2020 & # x0201d; (Acção 5 sob o objectivo 2 sobre a restauração de ecossistemas degradados, Comissão Europeia, 2018). NEAs são uma forma para cumprir esses objetivos. Uma avaliação é a análise & # 0201c; análise de informações com a finalidade de ajudar alguém em uma posição de responsabilidade para avaliar possíveis ações ou pensar em um problema; # x0201d; (Maes et al., 2018). O Guia de Avaliações recentemente publicado da Plataforma Intergovernamental sobre Biodiversidade e Serviços de Ecossistemas (IPBES 2018) incluiu avaliações baseadas em revisões de literatura, bem como na revisão crítica e avaliação de conhecimento atual (incluindo conhecimento indígena e local) e julgamento de especialistas para identificar evidências e lacunas de conhecimento. Mais especificamente, uma avaliação do ecossistema serve como uma síntese de dados baseada em questões políticas sobre o estado da biodiversidade e dos ecossistemas e do ES que eles fornecem (Maes et al., 2018). Uma avaliação do ecossistema, portanto, avalia os vínculos entre os seres humanos e seu ambiente natural de forma relevante para a tomada de decisões (Ash et al., 2018).
Vários países europeus começaram a avaliar a biodiversidade, ecossistemas e ES na escala nacional. Embora existam algumas avaliações completas na Europa, existem várias atividades em andamento, como as da França, Suécia, Dinamarca, Grécia, Suíça e Itália (Braat 2018, Teller 2018). Dada a ausência de padrões para a realização de avaliações e contextos, recursos e interesses políticos nacionais divergentes, as abordagens para NEAs diferem entre os países. Para aprender com essas avaliações e para informar as avaliações em andamento e futuras, é crucial analisar como essas NEAs foram conceituadas e operacionalizadas na prática. Além disso, dado que muitas NEA europeias têm como objectivo cumprir com a política comum Objectivo 2, Acção 5 da Estratégia de Biodiversidade da UE, é necessária uma avaliação da sua abrangência, selecção sistemática de informação avaliada e comparabilidade. Esta análise serve como informação de linha de base para os decisores e cientistas de países que ainda não realizaram um NEA para aprender com a experiência prática inicial, bem como a plataforma intergovernamental de Ciência-Política Plataforma sobre Biodiversidade e Serviços de Ecossistemas (IPBES) em toda a Europa e globalmente.
Neste artigo, fornecemos uma visão geral das avaliações de ecossistemas (sub) nacionais. Realizamos e analisamos oito NEAs publicados e comparamos seus objetivos, contexto político, conceitos, métodos e aspectos da operacionalização dos NEAs. Analisamos os objetivos da política e o público abordado pelas avaliações. Em particular, estávamos interessados em saber se as NEAs abordam questões similares e recorrentes e os desafios atuais no que se refere ao mapeamento e avaliação de ecossistemas e ES, bem como a forma como a relação entre biodiversidade e ES foi conceituada e avaliada. Com base nos elementos que as avaliações contêm, criamos uma tipologia de NEAs que caracteriza a diversidade de abordagens potenciais. Terminamos com conclusões para o avanço dos NEAs futuros e para os passos necessários para a coerência entre europeus.
Seleção de NEAs.
Identificamos as NEA europeias publicadas com base nos estudos gerais gerais (Braat 2018), informações do grupo de trabalho EU Mapping and Assessment of Ecosystems and Their Services (TELL 2018) e do Catálogo de Avaliações IPBES sobre Biodiversidade e Serviços de Ecossistemas ( catalog. ipbes). Concentramo-nos em avaliações publicadas após a Avaliação do Ecossistema do Milênio (MA 2005). Nossa análise foi restrita a avaliações que avaliaram informações biofísicas específicas sobre ecossistemas ou ES e cobriram todo o país. Portanto, incluímos apenas os estudos de Economia da Biodiversidade e Ecossistemas (TEEB) que estavam indo além de estudos de caso ou um enfoque predominante na integração de valores econômicos de ecossistemas e ES. Foram selecionados oito NEAs, incluindo diferentes estágios e formas de avaliação, ou seja, ambos os NEAs concluídos, como o NEA do Reino Unido (2018) e os estudos avançados de escopo, como o NEA norueguês (tabela & # x200B; (tabela1; 1, NOU 2018). Incluímos uma elaborada avaliação regional do ecossistema (Flanders; INBO 2018) que em sua cobertura, profundidade e rigor relativamente elevados apresentaram características de um NEA (Jacobs et al., 2018). Embora a avaliação suiça (Staub et al., 2018). al 2018) forneceu avanços conceituais importantes e links para indicadores nacionais, não foi incluído, porque ainda não avaliou informações biofísicas. No melhor de nosso conhecimento, nossa seleção apresenta uma visão geral de todos os NEAs atualmente publicados na Europa.
Revise perguntas.
Para avaliar e comparar os NEAs, foram desenvolvidas 15 questões de revisão para abordar os seguintes aspectos das avaliações: objetivos e objetivos, contexto político (incluindo enquadramento, mandato e financiamento), aspectos relacionados ao conteúdo e metodológicos e questões relacionadas à governança e implementação (tabela & # x200B; (tabela2). 2). Além disso, identificamos questões recorrentes e desafios atuais em relação ao mapeamento e avaliação de ecossistemas e ES.
Métodos de pesquisa.
Todos os documentos foram lidos e seus conteúdos analisados e categorizados contra as perguntas de revisão por autores fluentes nas respectivas línguas. As respostas foram observadas e verificadas pela qualidade pelo primeiro autor. As categorias de respostas foram criadas para classificar e condensar informações. Então, as respostas foram verificadas por pares de dois autores. Em caso de ambiguidades, os autores principais dos NEAs foram contatados para verificar a informação. Esta análise de documento permitiu a exploração objetiva dos aspectos documentados das NEAs. No entanto, não permitiu verificar se aspectos que não foram documentados não foram considerados ou simplesmente foram omitidos. Por exemplo, o fato de que a academia não foi mencionada especificamente como público-alvo nos objetivos não implica necessariamente que esse grupo não tenha sido considerado.
Os ES foram classificados de acordo com o nível de grupo da Classificação Internacional Comum de Serviços de Ecossistemas (CICES, versão 4.3, Haines-Young e Potschin 2018), com ligeira renomeação por razões de clareza e compreensão. ES que se enquadram em cada uma dessas categorias de grupo foram registrados e contados.
Caracterização curta das NEAs.
A NEA portuguesa (Pereira et al., 2009) foi uma das avaliações subglobal realizadas como parte da Avaliação dos Ecossistemas do Milênio. Avaliou nove tipos de ecossistema e uma seleção de ES, e continha cinco estudos de caso. O NEA do Reino Unido (2018) é um dos NEAs mais abrangentes da Europa. Avaliou oito tipos de ecossistema e um grande número de ES relacionados. Ele continha quatro avaliações regionais sobre o status e as tendências dos ecossistemas e ES, bem como uma exploração de diferentes formas de avaliação de ES. A NEA espanhola (EME 2018) avaliou 14 tipos de ecossistemas (incluindo ecossistemas terrestres, aquáticos, de transição e urbanos) e 22 ES, incluindo cinco estudos de caso. Como parte da NEA espanhola, um novo relatório sobre avaliação econômica foi publicado em 2018 (EME 2018). O NEA norueguês (NOU 2018) foi um relatório de peritos para o parlamento nacional norueguês. Ele continha uma avaliação de 11 tipos de ecossistema, bem como uma avaliação biofísica e monetária de uma seleção de ES. A avaliação para a região belga da Flandres (INBO 2018) foi uma avaliação sub-nacional do ecossistema que se concentrou na quantificação espacial do 16 ES e no estado e tendências da biodiversidade, bem como seu papel na provisão de ES. A avaliação neerlandesa (de Knegt 2018) quantificou especificamente o estado e as tendências da provisão e o uso real do 17 ES nos Países Baixos. A avaliação finlandesa (J & # x000e4; ppinen e Heli & # x000f6; l & # x000e4; 2018), um relatório TEEB, continha uma avaliação curta de 28 ES e estudos de caso sobre o mapeamento do valor de ES. A avaliação alemã (Albert et al., 2018) recomendou indicadores nacionais da ES e forneceu mapas sobre o estado atual desses indicadores.
Objetivos e objetivos (revisar as questões 1 e # x02018; 2)
Os NEAs declararam diversos objetivos e objetivos (tabela 3a). O objetivo mais frequentemente mencionado foi avaliar o estado atual dos conhecimentos sobre ecossistemas e ES, & # x000ad, seguido do objetivo de fornecer a base de conhecimento para questões políticas sobre o manejo sustentável dos ecossistemas. Ambos os objetivos estão em linha com a definição de uma avaliação do ecossistema (Ash et al., 2018, Maes et al., 2018). Quatro avaliações (NO, NL, FI, DE) mencionaram a exploração de conceitos, métodos e indicadores e, portanto, apresentaram trabalhos em andamento para os propósitos clássicos de uma avaliação. A avaliação alemã centrou-se no desenvolvimento de indicadores, enquanto o relatório norueguês avalia criticamente a aplicabilidade do conceito em um contexto norueguês.
Vários públicos-alvo foram referidos nos NEAs (tabela 3b), informando diferentes setores para adicionar à iniciativa internacional de mestrado (PT, SP) ou cumprindo leis e estratégias. O NEA do Reino Unido mencionou explicitamente o aspecto de capacitação do processo de avaliação. Esta avaliação promoveu ativamente a colaboração interdisciplinar e as abordagens transdisciplinares ao envolver as partes interessadas junto com os cientistas no processo de avaliação. O envolvimento das partes interessadas também foi um objetivo proeminente na avaliação espanhola, enquanto a avaliação flamenga apontou para melhorar a comunicação entre os setores através do relatório.
Contexto político (revisar questões 3 e # x02018; 5)
O enquadramento, o mandato da política e as fontes de financiamento de cada NEA estão resumidos na tabela 4a e # x02018; 4c. Todos os NEAs referiram-se a documentos, convenções e iniciativas políticas específicas para enquadrar a avaliação. O enquadramento mais comumente mencionado foi o MA, seguido por TEEB e iniciativas contábeis nacionais, como o Banco Mundial & # x02018; o Projeto de Contabilidade de Riqueza e Avaliação de Serviços de Ecossistemas (WAVES) e o Sistema de Meio Ambiente da América do Norte (NCE); Contabilidade Econômica (SEEA) estrutura. A maioria dos relatórios também está vinculada a convenções internacionais, como a Convenção sobre Diversidade Biológica (CBD), Ramsar, UNCCD e UNFCCC. Quatro avaliações (UK, SP, NO, VL) referiram-se a IPBES. Os NEAs dos Estados membros da UE que foram publicados após a estratégia da UE sobre Biodiversidade (2018) referiram-se a esta estratégia e seu requisito particular para mapear e avaliar ecossistemas e ES.
O enquadramento refletiu os mandatos das políticas estabelecidos para avaliações individuais. A avaliação portuguesa é um exemplo interessante, porque resultou de um processo competitivo lançado pela iniciativa de MA liderada pela ONU. Durante o processo, recebeu cartas de apoio de vários atores governamentais. Em contraste, os governos & # x02018 e, em particular, o respectivo ministério do meio ambiente ou agências ambientais & # x02018, forneceram claramente o mandato em cinco casos (UK, SP, NO, FI, DE). No caso da avaliação holandesa e flamenga, os institutos de pesquisa do governo realizaram a avaliação junto com parceiros no contexto de suas tarefas oficiais. A NEA do Reino Unido tinha a maior variedade de mandataries, incluindo o Departamento de Meio Ambiente, Alimentação e Assuntos Rurais (Defra); o Governo da Assembléia de Galês; o governo escocês; a Agência de Meio Ambiente da Irlanda do Norte; e conselhos nacionais de pesquisa. O mandato da política também estipulava o financiamento da avaliação. No caso do NEA do Reino Unido, todos os mandatários acima mencionados também eram financiadores, permitindo uma abordagem potencialmente mais holística que integre vários interesses, às vezes conflitantes (por exemplo, entre a conservação da natureza e a agricultura).
Seis NEAs receberam financiamento de uma única fonte, o governo, ministérios ambientais ou agências ambientais e de conservação da natureza. As avaliações portuguesas e do Reino Unido extraíram de uma variedade de fontes de financiamento. As contribuições em espécie de universidades e institutos de pesquisa foram mencionadas explicitamente na avaliação portuguesa, enquanto que essas contribuições por autores e recursos associados devem ser consideráveis na maioria dos casos.
Conteúdo e métodos dos NEAs.
Elementos dos NEAs.
Observamos semelhanças e diferenças notáveis no tipo de elementos presentes em cada NEA, bem como nos métodos utilizados para avaliar ecossistemas e ES (tabela x200B) (tabela 5). 5). Todos os oito NEAs abordaram o estado de ES. Seguiu-se uma avaliação das tendências de ES (sete NEAs). Em seis NEAs, foram discutidos drivers de mudança diretos e indiretos e sugestões de respostas societárias e opções de decisão. O estado e as tendências dos ecossistemas e da biodiversidade foram documentados em cinco avaliações, em particular as que foram mais elaboradas. A avaliação social ou econômica da ES faz parte de cinco avaliações. As interações entre ES foram avaliadas em três NEAs (UK, SP, VL), principalmente usando revisão de literatura e julgamento de especialistas. Curiosamente, a relação entre biodiversidade e ES foi muitas vezes implícita e foi abordada de forma específica e sistemática em apenas quatro avaliações (UK, SP, VL, NL) com base na revisão da literatura, no julgamento de especialistas e no pensamento conceitual (ver também a seção 3.5). As avaliações de como um país se baseia em ES fornecidas por ecossistemas fora de suas fronteiras foram encontradas em quatro avaliações (UK, NO, VL, NL). Três NEAs (UK, SP, VL) também desenvolveram suas próprias estruturas conceituais para suas avaliações. Essas estruturas foram adaptações da estrutura MA (MA 2005), com uma posição mais proeminente de ecossistemas (ou capital natural) que constituem a base da provisão ES. Esses quadros também refletiram o desenvolvimento conceitual da ciência da ES ao longo dos anos, com os bens de ecossistema distintivos do NEA do Reino Unido (ou seja, os resultados de ecossistemas combinados com outros insumos de capital) ou a avaliação flamenga que distingue mais precisamente aspectos contextuais diferentes no geração de ES (fornecimento, demanda, uso). Uma comparação vertical de todos os elementos na tabela & # x200B; O quadro5 5 também identifica claramente três avaliações mais abrangentes que abordaram um número maior dos 12 elementos que classificamos. O Reino Unido e o NEA espanhol abordaram 11 elementos, e a avaliação flamenga abordou 10 elementos. A comparação vertical também identifica claramente o estudo de escopo alemão, que se concentrou no desenvolvimento de indicadores para o estado de ES.
Os métodos das NEAs.
Além disso, observamos uma variedade de métodos empregados para os NEAs. As mais utilizadas foram as revisões da literatura e as estatísticas nacionais. Seguiram-se o julgamento especializado, em particular para avaliar os fatores diretos e indiretos de mudança, as interações entre ES e a relação entre biodiversidade e ES. O mapeamento e a modelagem espacial foram utilizados para diferentes elementos, como o estado e as tendências dos ecossistemas e da biodiversidade, o estado de ES, a avaliação de ES e estudos de caso. Embora a Estratégia da UE para a Biodiversidade 2020 (publicada em 2018) solicitou o mapeamento e avaliação de ES pelos Estados membros, poucas avaliações até o momento foram mapeadas ES sistematicamente. A avaliação flamenga forneceu mapas em todas as ES avaliadas, que, dependendo do ES, mostram a condição, a capacidade, o fluxo, o uso e / ou a demanda do ES do ecossistema (veja abaixo as definições de termos). O NEA espanhol apresentou mapas que mostravam tendências qualitativas de ES por tipo de ecossistema e mapas quantitativos que descrevem o fluxo ou capacidade de ES dependendo do serviço. O relatório alemão continha mapas preliminares sobre indicadores selecionados, que descrevem a capacidade ou o fluxo dos respectivos ES, bem como os indicadores de demanda de ES. O NEA do Reino Unido (realizado antes do lançamento da estratégia da biodiversidade da UE) continha poucos mapas para serviços selecionados únicos (por exemplo, armazenamento de solo-carbono) e poucos mapas para sub-regiões. O NEA do Reino Unido e a avaliação finlandesa continham mapas sobre o valor econômico de ES para partes do país.
Categorias de serviços do ecossistema (questão 8).
NEAs avaliadas entre 6 e 28 ES de acordo com uma classificação no nível de grupo de CICES (figura # x200B; (figura1, 1, apêndice suplementar S1 para detalhes). O ES incluído em todos os NEAs foi a provisão de alimentos, água potável, Fibras e materiais, seqüestro de carbono e recreação. Sete NEAs avaliaram a polinização (ciclo de vida e habitat) e a regulação da fertilidade do solo. O controle de pragas foi avaliado seis vezes, enquanto que a regulação da qualidade do ar (na mediação de resíduos do grupo) e a biomassa para uso energetico foram avaliadas cinco vezes. As ES dignas de nota que foram avaliadas em apenas alguns estudos incluem a produção de cortiça (PT), recursos ornamentais (Reino Unido, NO) e o valor de existência de aspectos indígenas da biodiversidade (NL). Estes exemplos mostram como, apesar das chamadas para a harmonização, as avaliações dos ecossistemas são específicas do contexto e mantêm as características típicas específicas da região. Em todos os oito NEAs, os serviços de provisionamento foram avaliados 53 vezes, regulando serviços 71 vezes e serviços culturais 3 4 vezes.
Avaliações de aspectos contextuais dos serviços ecossistêmicos (questão 9).
NEAs consideram em um grau diferente os aspectos contextuais de ES que desempenham um papel no processo de entrega de ES (tabela # x200B; (tabela6) .6). Esses aspectos referem-se ao fato de que os ES se tornam realidade na interação entre as características biofísicas e socioeconômicas do uso do ecossistema (Villamagna et al., 2018). Embora estes aspectos tenham sido denominados de forma diferente no literato (por exemplo, Villamagna et al. 2018, Schr & # x000f6; ter et al., 2018a, Yahdjian et al., 2018), descrevemos brevemente aqui seus significados genéricos. A condição do ecossistema é a soma das propriedades biofísicas que sustentam os serviços. A capacidade é o potencial de um ecossistema para fornecer um serviço específico. A Flow descreve o fornecimento efetivo desse serviço aos humanos. Caso não seja feita qualquer distinção entre a capacidade eo fluxo de serviços, uma avaliação ES pode potencialmente se referir a qualquer um desses aspectos. O uso e a demanda são considerados juntos aqui por razões de simplicidade e referem-se ao uso e ao consumo de um serviço independentemente de onde o ES se origina ou a fatores que influenciam as necessidades das pessoas para esse serviço (Wolff et al., 2018). Os valores de ES são medidas de importância com base nos princípios, preferências e virtudes que explicam quais são as questões da ES para as pessoas (Chan et al., 2018).
A condição do ecossistema foi avaliada em cinco casos. No entanto, os aspectos particulares da biodiversidade que são cruciais para a prestação de serviços específicos raramente foram identificados e avaliados (ver seção 3.5); nem o fato de que a condição do ecossistema para a alta provisão de algum ES (por exemplo, provisionamento) pode estar em desacordo com a condição subjacente à provisão de outros ES (por exemplo, cultural). Várias NEAs não distinguiram sistematicamente diferentes aspectos da ES, mas, em vez disso, geralmente avaliam os serviços, que podem se relacionar com o potencial ou a provisão real, ou seja, a capacidade ou o fluxo (PT, UK, SP, NO, FI). Dois NEAs avaliaram sistematicamente a capacidade dos ecossistemas para fornecer um serviço (VL, DE). A avaliação flamenga contrastou essa capacidade com o fluxo e a demanda por este serviço na área. A avaliação alemã comparou a capacidade com a demanda também. Notavelmente, a avaliação neerlandesa teve como objetivo contrastar o fluxo com o uso total na Holanda. Os valores de ES foram avaliados em quatro casos, # x02018, isto é, as duas avaliações tipo TEEB (NO, FI) e duas das NEAs mais elaboradas (UK, VL).
Os vínculos conceituais e empíricos entre a biodiversidade e os serviços ecossistêmicos (questão 10).
A Biodiversidade e a ES foram conceitualmente ligadas de três maneiras nas NEAs (Figura 2): (1) a biodiversidade como suporte e apoio ES, (2) conflitos de biodiversidade e trade-offs com ES e (3) A biodiversidade como (parte de) um ES. Essas diferentes relações entre biodiversidade e ES foram distinguidas anteriormente (Mace et al., 2018, Reyers et al., 2018). As diferenças conceituais em como as ligações de biodiversidade com ES podem resultar de diferentes entendimentos do significado da biodiversidade, relacionados tanto com a diversidade da vida como com diferentes substitutos, como espécies e habitats, como parte de objetivos específicos de conservação.
A primeira e clássica conceituação é a biodiversidade como suporte e apoio ES (Mace et al., 2018), atuando como um regulador e mantendo a estabilidade dos ecossistemas. Conceitualmente, essa visão é compartilhada em todos os NEAs. Poucos, no entanto, avaliaram especificamente a relação entre este aspecto da biodiversidade e ES. O NEA do Reino Unido avaliou a quantidade de evidências e a importância do número de grupos taxonômicos para a provisão da ES final. A avaliação flamenga proporcionou uma quantidade considerável de trabalho conceitual e avaliações de especialistas sobre o papel de diferentes componentes da biodiversidade para a provisão ES. Por exemplo, os estoques (biomassa, números, área e superfície) estavam conceitualmente ligados a serviços de provisionamento; estruturas e padrões predominantemente de serviços culturais; e funções e processos para a regulação de serviços. A composição da biodiversidade, referente à identidade e, possivelmente, à abundância das espécies fornecendo ES, está ligada a atividades de conservação. Além disso, o NEA flamengos forneceu avaliações de especialistas sobre o papel de grupos taxonômicos e tipos de ecossistema para ES.
A segunda perspectiva aborda conflitos e trade-offs que ocorrem entre a biodiversidade e ES. Conceitualmente, isso se refere a casos em que o gerenciamento de ES não se concentra na biodiversidade per se e leva a uma diminuição da biodiversidade. Certos componentes da biodiversidade são vistos como prejudiciais ou contrários à prestação de serviços e vice-versa. Por exemplo, a avaliação alemã afirmou que o gerenciamento de ES não deve ser mal concebido como igual à conservação da biodiversidade, referindo-se particularmente aos efeitos potencialmente prejudiciais da gestão dos serviços de provisionamento através, por exemplo, da silvicultura e da agricultura (Albert et al., 2018). O NEA holandês avaliou o impacto de populações específicas na provisão de serviços. Conflitos e danos causados por espécies são avaliadas com a ajuda de julgamentos de especialistas para provisão de alimentos, produção de madeira e biomassa, proteção costeira e patrimônio natural (de Knegt 2018). Por exemplo, as espécies potencialmente causadoras de incômodo para a sociedade são mencionadas neste contexto, como pragas e parasitas, incluindo coelhos, carrapatos, ratos ou mosquitos. Este link também foi avaliado empiricamente na avaliação flamenga através de análises de correlação espacialmente explícitas, contribuindo como um primeiro passo para identificar as relações causais. Embora, para a maioria dos serviços, tenha sido observada uma correlação espacial positiva com a presença de grupos taxonômicos específicos, os trade-offs foram descobertos entre todos os grupos taxonômicos avaliados e alguns serviços (INBO 2018).
A terceira perspectiva considera a biodiversidade como (parte de) um serviço em si (ver Mace et al., 2018). O NEA espanhol declarou explicitamente que não considera esta opção e a NEA norueguesa apenas discute isso. Outros países incluíram, por exemplo, habitats e espécies selvagens como parte do patrimônio natural (Reino Unido, NL); como espécies emblemáticas representativas da biodiversidade no país (Reino Unido, NL); ou como valores de existência (FI). Além disso, podem observar-se fortes sobreposições entre os indicadores de componentes da biodiversidade e das ES, como a naturalidade e a diversidade dos ecossistemas como indicadores de serviços culturais ou a proporção de pequenas estruturas naturais e seminaturales em paisagens agrícolas como indicador de polinização e controle de pragas em o caso da avaliação alemã.
Operacionalização dos NEAs (perguntas 12 e # x02018; 15).
Os grupos de partes interessadas mais comumente envolvidos nas avaliações foram ministérios e administração (ambiental) e instituições acadêmicas, seguidos por ONGs e instituições do setor privado (tabela 7a). Essas partes interessadas poderiam contribuir para as avaliações (tabela 7b) por & # x000ad; definir as necessidades dos usuários e expressar suas opiniões em cinco casos. As partes interessadas também fizeram parte do processo de avaliação, por exemplo, oficinas, entrevistas e questionários em quatro casos. O desenvolvimento do cenário foi realizado em três casos (PT, UK, SP).
Os números dos autores diferiram em grande parte entre as avaliações e variaram de 12 para a Noruega para mais de 300 para o NEA do Reino Unido (tabela # x200B; (tabela1). 1). A revisão externa dos pares foi realizada em cinco casos (PT, UK, SP, VL, NL).
Definição de tipos de NEAs.
Nós identificamos heuristicamente quatro tipos amplos de NEAs. O primeiro tipo segue de perto a abordagem do MA (PT, UK, SP). Típico para estas avaliações & # x0201c; MA-like e # x0201d; foram um grande número de elementos avaliados, incluindo o estado e as tendências dos ecossistemas e da biodiversidade, o estado e as tendências da ES, os fatores de mudança, os cenários futuros e as opções de resposta. Esses relatórios foram publicados de 2009 a 2018. O segundo tipo é & # x0201c; estudos de escopo avançados & # x0201d; (NO, FI, DE), que foram publicados de 2018 a 2018. Típico para esses NEAs foram os poucos elementos que continham e seu foco particular em indicadores (DE) ou estudos de caso de avaliação monetária de acordo com a abordagem TEEB (NO, FI). Um terceiro tipo é uma avaliação com um objetivo de pesquisa específico (NL). O relatório holandês continha vários elementos de um NEA, mas faltava completude e amplitude da análise porque se concentrava em uma questão de pesquisa específica. Um quarto tipo é representado pela avaliação flamenga. Esta NEA pode ser caracterizada como uma avaliação semelhante a MAES, fortemente ligada aos requisitos da Estratégia de Biodiversidade da UE sobre Mapeamento e Avaliação de Ecossistemas e seus Serviços (Maes et al., 2018), pois continham avaliações sistemáticas, espacialmente explícitas. Além disso, tendo sido publicado em 2018, já continha elementos que refletiam o avanço do campo de pesquisa da ES, como a avaliação de diferentes aspectos contextuais da ES ou a avaliação do vínculo com a biodiversidade e as pegadas do ES.
Discussão.
Nas seções a seguir, discutimos o papel do conceito de ES como um objeto de fronteira em NEAs, a evolução e tipologia de NEAs, e a relação entre biodiversidade e ES. Além disso, fornecemos cinco recomendações para futuras NEAs.
O conceito de serviço de ecossistema como um objeto de fronteira.
Uma avaliação do ecossistema é um processo social (Wilson et al., 2018) e pode fornecer uma ponte para conectar diferentes setores (Bonn e outros, 2009). Dentro desse processo, o conceito ES pode atuar como um objeto de fronteira que conecta diferentes atores societários e diferentes disciplinas científicas (Abson et al., 2018, Schr & # x000f6; ter et al., 2018b, Opdam et al., 2018). Faz isso por ser suficientemente vago para permitir que diferentes perspectivas se juntem e, ao mesmo tempo, sejam robustas o suficiente para ajudar a desenvolver uma visão comum. Este papel do conceito de ES é expresso no processo de muitos NEAs. Stakeholder engagement had a prominent place in the aims of some assessments and was realized to different degrees in most NEAs. The UK NEA prominently expressed the advancement of interdisciplinary work among participating scientists as an aim of the assessment. By their nature, NEAs connect policymakers and their policy questions to scientific questions. Although the ES concept supports collaboration and exchange during an NEA, the capacity of the concept to actually align different interests of actors is limited. For instance, all involved parties may support the general objective to sustain the ES humanity depends on, but views may differ on, for example, which services to prioritize in assessments or which methods to use for ES valuation.
The evolution and typology of NEAs.
We have distinguished four types of NEAs that have developed in their temporal and country-specific context, including MA-like assessments, MAES-like assessments, scoping studies, and studies with a particular research aim. An MA-like assessment could be characterized as a holistic analysis of the conditions, trends, and scenarios of biodiversity and ES. An MAES-like assessment represents a further development of NEAs and includes in addition a spatially explicit biophysical quantification and valuation of ES for the whole area, as was requested by the EU Biodiversity Strategy in 2018. The UK NEA lacked such a prominent spatial component. Our analysis demonstrated that scoping studies go beyond pure feasibility studies and already provide an assessment of information on ES. The difference is often the number of elements such assessments contain. Furthermore, such studies discuss how the ES concept could be applied to a national context (NO), as was also done as the first step of the French NEA (MEDDE 2018). Under scoping studies, we included also the TEEB reports of Norway and Finland. Both contained preliminary biophysical assessments of ecosystems (NO) and ES (NO, FI) but in general placed more emphasis than other reports on valuation and contained case-study-based illustrations of the economic significance of ES. TEEB studies do not aim to be spatially comprehensive at a (sub-)national level and are more focused on addressing policy-specific questions. A report such as the Dutch assessment could be seen as a first step toward an NEA because it synthesized information on ES in a policy-relevant way. This report, however, in comparison with the others, lacked, for instance, an institutional grounding in the form of a long-term assessment process, a clear policy mandate, and stakeholder involvement.
Future NEAs are likely to evolve further in regard to process and approaches, both because of advanced scientific understanding and the work of IPBES. Among the capacity-building priorities identified in IPBES is the support of future NEAs (IPBES 2018). IPBES is preparing several thematic and regional assessments, as well as a global assessment, guided by the IPBES conceptual framework (Díaz et al. 2018). The latter aims to be a tool to connect several scales of analysis and knowledge systems. The next generation of NEAs is likely to use the IPBES Conceptual Framework and other guidance set out in the Guide for Assessments from the IPBES (IPBES 2018).
Biodiversity and ecosystem services are mainly assessed separately.
The links between biodiversity and ES have been assessed in three conceptually distinct ways. The first link depicts ES as functionally dependent on biodiversity. This was the dominant conceptualization in the literature (Cardinale et al. 2018, Hooper et al. 2018, Harrison et al. 2018). Although several publications reported multiple positive correlations between biodiversity metrics and ES (e. g., Harrison et al. 2018), it remains a challenge to use this knowledge in assessments, let alone in policy - and decisionmaking processes. In NEAs, the functional link between biodiversity and ES is most often not empirically assessed. In particular, country-specific knowledge on small-scale biodiversity‘ES relationships is missing, and methods and tools to assess this information are currently being developed. This might partly be due to the fact that both biodiversity and ES are complex concepts that cannot be measured with one single metric. Both encompass multiple attributes at different temporal and spatial scales, which challenges the relevance of biodiversity indicators for assessing ES. A second reason for the mainly conceptual link between biodiversity and ES may be that biodiversity-monitoring schemes often focus on threatened habitats and species for conservation objectives. However, the contributions of these species to energy and material flows within the food web are often marginal, because these tend to instead relate to the functional composition of biotic communities (Cardinale et al. 2018, Lavorel 2018). The missing information on the functional link is often based on lack of data on biodiversity groups important for the provision of provisioning and regulating services. This lack has been discussed in three NEAs (UK, SP, VL). However, biodiversity groups that are well studied, such as vertebrates or iconic plants, often contribute to cultural services. The UK NEA has pointed to this “cultural divide” between biodiversity backing provisioning and regulating services on one hand and cultural ES on the other (Norris et al. 2018).
The second link emphasizes the conflict between biodiversity and some ES. This link is little developed in the literature, although certain aspects of biodiversity are already described as “disservices” (Dunn 2018, Gómez-Baggethun and Barton 2018). Trade-offs between biodiversity and ES result from direct interactions between both but are regularly conceptualized and measured as negative impacts of service use on biodiversity and not vice versa (e. g., Power 2018).
The third link depicts biodiversity as either a service or as part of a service. According to this understanding, some components of biodiversity (e. g., a diverse landscape or iconic plant and animal species) can be considered as a service being directly enjoyed by people (Mace et al. 2018, von Haaren et al. 2018). Including aspects of biodiversity prominently as a service itself might allow for better engagement of the biodiversity community within an assessment, because biodiversity experts and conservationists might have a fundamentally different value system (Reyers et al. 2018, Tallis and Lubchenco 2018), preferring the intrinsic values of biodiversity over anthropocentric approaches. Nevertheless, a precise distinction between indicators for biodiversity and ES is needed next to an advancement of appropriate assessment methods.
Recommendations for advancing future NEAs.
Improving the common evidence base.
National or regional statistical data were used in the NEAs, enhancing the empirical evidence base of assessments. Unsurprisingly, statistical data on indicators are often readily available, especially for assessing the state and trends of provisioning services, such as food, timber, or water, which most often form marketable goods and are therefore included in national statistics. For regulating and cultural services, less data are available (European Commission 2018), and ways need to be found to account for them. In particular, new monitoring concepts for the functional dependence of ES on biodiversity are necessary.
Under its Action 5, the EU Biodiversity Strategy urges the EU member states to map and assess ecosystems and their services (MAES). The MAES initiative includes also the recognition of economic values and calls for the development of a consistent reporting or accounting system. The importance of achieving the objectives of Action 5 on countrywide mapping and assessment and the development of a common knowledge base for ecosystems is underlined by ESMERALDA, a Horizon 2020 funded project (the European Commission's framework program for research and innovation). It gives direct support to the member states with their implementation of Action 5.
If common policies should be developed on the basis of the results of NEAs, then a framework for a common European baseline for national assessments is needed. The ES that were most commonly assessed across all NEAs could indeed provide a common starting point for such large-scale harmonization of ecosystem related data. However, as evident from our analysis, NEAs are highly context specific with regard to national policies and stakeholder interests, as well as environmental settings and socioeconomic characteristics; therefore, this framework design needs to leave space for country-specific adaptations. Nevertheless, for synthesis and comparison across the European Union, a core set of common elements with common methods is necessary. Therefore, there is a need to harmonize data across the EU. For biodiversity, work is underway to identify essential variables (Pereira et al. 2018). For ES, there is also a need for the standardization of indicators and methods to quantify and assess ES for different policy purposes (Crossman et al. 2018, Polasky et al. 2018, Schröter et al. 2018). The European Commission has recently started an initiative on the development of natural-capital accounts, in line with the United Nation's System of Environmental‘Economic Accounts.
Advancing mapping of ecosystem services.
It is apparent that to date, mapping and spatial modeling have rarely been used systematically in NEAs, even if dedicated policy exists at the EU level on mapping and assessment (European Commission 2018, 2018). It is important to note that some NEAs have been realized before the launch of the EU Biodiversity strategy that formulates this request.
ES are provided and demanded in specific areas, and policy advice concerning ecosystem protection, enhancement, and restoration therefore requires spatial information. If NEAs shall provide such information for decisionmaking, better use of spatially explicit analyses is needed. An important issue is to identify spatially separate areas in which ES are being provided, used, and demanded (Schröter et al. 2018a, Albert et al. 2018). Such information can increase clarity on where and how much of a potential to provide a service is actually used and therefore indicate the sustainability of ecosystem use. Such spatial distinction can also help to identify to what degree service-providing areas match with areas in which beneficiaries make use of a service and thereby inform planning and regulatory processes and possibly also financial and fiscal instruments (Bonn et al. 2018, Reed et al. 2018). Within the field of mapping ES, there is furthermore a strong research need for more accurately incorporating ecological relationships and therefore functionally inferring ES from different aspects of biodiversity (Lavorel et al. 2018), as well as further exploring the potential of remote sensing for ES assessments (de Araujo Barbosa et al. 2018).
Distinguishing the contextual aspects of ecosystem services.
Different contextual aspects of ES, such as the capacity, flow, and demand for ES, have been identified as a crucial elements for assessing ES (Burkhard et al. 2018, Schröter et al. 2018a, Albert et al. 2018). We have observed important conceptual developments in distinguishing these contextual aspects of ES in several assessments (VL, DE, NL) in order to provide information on sustainability of ecosystem use. Further work is needed to operationalize this distinction and in particular to cope with lack of data, in particular on the capacity of ecosystems to provide services but also on the manifold aspects that influence the demand for services (Wolff et al. 2018).
Including interregional flows of ES in NEAs.
NEAs usually assess only the ES provided in the respective country but ignore a country's demand for ES beyond its borders and the associated footprint on biodiversity and ecosystems. Benefits from ecosystems cross national borders (López-Hoffman et al. 2018, Liu et al. 2018), such as via the transportation of goods or the movement of people appreciating landscapes elsewhere.
Four NEAs (UK, VL, NO, NL) explicitly addressed international flows of ES and could provide helpful guidance for tackling this challenge in other assessments. The UK NEA (2018) has made a first attempt to assess the footprint for biomass. The Flemish assessment (INBO 2018) emphasized that the state and trends of ecosystems and ES in Flanders are closely linked to the state and trends of ES in foreign ecosystems. The Norwegian assessment (NOU 2018) distinguished three types of impact on other countries’ ecosystems‘namely the indirect environmental impacts of Norwegian foreign investments, import of goods and services, and development aid. The Dutch assessment found that for none of the 17 ES is demand met by the actual provision of services by Dutch ecosystems, but demand either remains unmet or is being fulfilled by technological alternatives or import from abroad (de Knegt 2018).
Increasing the policy relevance of NEAs.
A major issue for future NEAs is to better connect and integrate the results of the assessment with policy-relevant questions and policy impact assessments. Often, NEAs start with the identification of a set of policy-relevant questions that are then addressed on the basis of different data and knowledge sources. Most NEAs framed their goals with respect to policy targets. Understandably, because the stated aims of NEAs are relatively broad, the results cannot always easily be broken down to serve practical management processes.
So far, mechanisms have been weak to translate the NEA results into ongoing planning processes, such as environmental impact assessments, or priority setting for decisionmaking. Pathways to further operationalize the NEA evidence base through different policy support tools are needed, and several country-specific studies have made advances to link ES to existing national indicators (Staub et al. 2018, Mace et al. 2018, Albert et al. 2018). Overarching policy-relevant questions that could be addressed in assessments could be guided by the Aichi targets 2 and 3, calling for the mainstreaming of biodiversity and ES, such as in the planning or the development of economic policy instruments.
The ongoing development of natural-capital accounts at the global, EU, and national scales can be considered an important step to operationalize the results of NEAs. At the global level, Aichi target 2 calls for the incorporation of biodiversity values into national accounting. At the EU level, Action 5 of the EU Biodiversity Strategy sets the ground for the establishment of national natural-capital accounts. Such accounts consist of regularly updated information about biodiversity, ecosystems, and ES, which NEAs typically collect. Such information is an essential basis to implement current biodiversity policy as well as to design new biodiversity policy. Furthermore, accounting can make the contribution of natural capital to economic development explicit alongside produced or manufactured capital, as well as human capital. In this way, natural-capital accounting provides important input to decisionmaking at regional, national, or EU level.
NEAs might also be helpful in informing conservation priority setting for the goal of the EU Biodiversity Strategy on restoring 15% of degraded ecosystems or the development of green infrastructure (European Commission 2018). In particular, the outcomes of NEAs are needed as a baseline against which further progress in achieving biodiversity targets can be evaluated. These connections of NEA assessment data with actual policy implications need to be further developed to inform and support policies that have an impact on natural resources, including policies on water, climate, agriculture, and forest, as well as for spatial planning.
Collaboration with national statistical offices will be key to mainstreaming the standardized data of ecosystems and biodiversity into policy domains. For this purpose, the continuation of key data collection and repeated and updated assessments are needed.
Conclusões.
The diversity of approaches and methods applied in NEAs to assess ecosystems, biodiversity, and ES highlights the context dependency of national assessments, which makes comparisons across NEAs challenging. This diversity is also explained by the temporal context in which the NEAs have been developed and by the progress made in the field during the last years. Although European NEAs naturally have a focus on national policy needs, those NEAs published after the EU Biodiversity Strategy often also aim to comply with it. A greater harmonization of data and methods could foster better implementation of policies at the European level on the basis of national results. To support the IPBES synthesis process, NEAs should be integrated at the European level. Standardization or at least harmonization of data collection, indicators, and methods to assess biodiversity and ES is needed, such as is currently underway with the MAES process. There are, however, limits to harmonization, as the development of context-dependent scenarios and the selection of country-specific ES have shown.
An ideal role model of an NEA does not exist. Rather, we have observed a continuum ranging from advanced scoping studies to elaborate assessments that cover many aspects that are currently under development in the research field of ES. Differences exist in terms of the number of involved scientists and therefore the costs for the assessment. The depth of an assessment is influenced by national investments and in-kind contributions of the scientific community. If an ideal NEA would be sketched, it could contain the following aspects: The building blocks or elements of the more comprehensive NEAs (PT, UK, SP, VL) could be seen as a benchmark for future NEAs. An NEA should contain an area-wide assessment of ecosystems and the ES they provide and should therefore not be primarily based on case studies. This assessment should distinguish both the capacity to provide services and their actual use. An NEA should aim for standardization and harmonization across countries for reasons of consistency on a European level. On the basis of that, several work packages could in a modular approach explore more country-specific problems, such as the assessment of international flows of ES or the relation to nationally policy-relevant questions. An ideal assessment could contain several stages, including the initial identification of goals for policy, practice, and science with stakeholders; scoping and feasibility studies; a collation and review of available data and evidence; inter - and transdisciplinary assessment and analysis processes; and peer review in iterative cycles. Furthermore, the conceptual and institutional set-up would allow for monitoring as iteration through planned time steps and follow-ups. To build on existing experience, we call for more exchange among NEA practitioners. Much knowledge has accumulated on the national level, and better networks for exchanging and jointly advancing knowledge should be developed. The current global IPBES and European MAES processes could be valuable catalysts for this endeavor.
Supplementary Material.
Supplementary Data.
Agradecimentos.
We thank Georgina Mace and the two anonymous reviewers for constructive comments that helped to improve the article. Special thanks also to Leon Braat for fruitful discussions on the ongoing process of NEAs and Mandy Hinzmann, Anna-Katharina Steinmetz, and Peter Haus for assisting with the document analysis. We are also grateful to the participants of the workshop held at the BES/SFE conference in Lille, France, on 11 December 2018, that fueled the start of this manuscript.
SL acknowledges support from RTD project OPERAs no. FP7-ENV-2018-308393. AB acknowledges funding from the European Union's Horizon 2020 Programme for Research and Innovation under grant agreement no. 641762.
Supplemental material.
The supplemental material is available online at Supplementary Data .
Mapping Ecosystem Services.
Monday, April 3rd, 2017.
This book is available online at Advanced Books.
Forward by Anne Teller, European Commission,, Directorate-General Environment.
“The world’s economic prosperity and well-being are underpinned by its natural capital, i. e. its biodiversity, including ecosystems that provide essential goods and services for mankind, from fertile soils and multi-functional forests to productive land and seas, from good quality fresh water and clean air to pollination and climate regulation and protection against natural disasters. This is the reason why, for example, the first priority objective of the 7th Environment Action Programme (7th EAP) of the European Union (EU) is to protect, conserve and enhance the EU natural capital. In order to mainstream biodiversity in our socio-economic system, the 7th EAP highlights the need to integrate economic indicators with environmental and social indicators, including by means of natural capital accounting, to measure the changes in the stock of natural capital at a variety of levels, including both continental and national levels.
The EU Biodiversity Strategy to 2020 called on Member States to map and assess the state of ecosystems and their services in their national territory by 2018, with the assistance of the European Commission. The economic value of such services should also be assessed, and the integration of these values into accounting and reporting systems at EU and national level should be promoted by 2020 (see Target 2, Action 5).
This specific action aims to provide a knowledge base on ecosystems and their services in Europe to underpin the achievement of the six specific biodiversity targets of the strategy as well as including a number of other sectoral policies such as agriculture, maritime affairs and fisheries and cohesion.
Mapping ecosystem services is essential to understand how ecosystems contribute to human wellbeing and to support policies which have an impact on natural resources. In 2018, an EU initiative on Mapping and Assessment of Ecosystems and their Services (MAES) was launched and a dedicated working group was established with Member States, scientific experts and relevant stakeholders. The first delivery was the development of a coherent analytical framework) to be applied by the EU and its Member States in order to ensure consistent approaches. In 2018, a second technical report) was issued which proposes indicators that can be used at European and Member State’s level to map and assess ecosystem services. The indicators are proposed for the main ecosystems (agro-, forest, freshwater and marine) and the important issue of how the overarching data flow from the reporting of nature directives can be used to assess the condition of ecosystems is also addressed.
From the start of MAES, some exploratory work was undertaken in parallel to assess how some of the biophysical indicators could be used for natural capital accounting. It was also important to ensure that the data flows available at European level and, in particular, those from reporting obligations from Member States would be used for the mapping and assessment of ecosystems and their condition. More recently, dedicated work on urban ecosystems was initiated with the active contribution of many cities and a fourth technical report) on mapping and assessment of urban ecosystems and their services was published. An overlapping activity on the strengthening of the mapping and assessment of soil condition and function in the long-term delivery of ecosystem services is also being developed.
In the context of The Economics of Ecosystems and Biodiversity (TEEB), a study of available approaches to assess and value ecosystem services in the EU was supported by the European Commission to support EU countries in taking forward Action 5 of the EU Biodiversity Strategy.
In 2018, a Knowledge Innovation Project on an Integrated System for Natural Capital and Ecosystem Services Accounting (KIP INCA) was launched jointly by four Commission services (Eurostat, Environment, the Joint Research Centre and Research and Innovation) and the European Environment Agency. This project aims to design and implement an integrated accounting system for ecosystems and their services in the EU, to serve a range of information needs and inform decision making of different policy sectors, building on existing work in EU countries. Important ecosystems services provided by nature will therefore be explicitly taken into account and demonstrate, in physical and to the greatest extent possible in monetary terms, the benefits of investing in the sustainable management of ecosystems and natural resources.
Finally, the European work undertaken under Target 2, Action 5, is actively contributing to major ongoing initiatives, such as the global, regional and thematic assessments under the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) and the UN guidelines on experimental ecosystem accounting from the System of Environmental-Economic Accounts (UN SEEA EEA).
At present, with the constructive support of research and innovation projects and actions, such as ESMERALDA and with the amount of work already accomplished in the Member States and at EU level, the momentum for the next steps is impressive (biodiversity. europa. eu/maes/maes_countries).
The policy developments in Europe, but also in many other countries and at global scale, have spurred the scientific community to map ecosystem services, to develop new methods, to assess uncertainty of maps and to provide practical applications of using maps in various decision-making processes. This book is an excellent summary of the achievements of ecosystem service mapping and provides guidance for scientists, students, practitioners and decision makers who need to map ecosystem services.
There are still big challenges ahead of us such as the improvement of the mapping and assessment of the ecosystem condition and the integration of the assessment of the ecosystem condition with ecosystem services and the construction of the first ecosystem accounts. As highlighted in this book, we are however on a very positive track!…”
Read on and access this book online at: Advanced Books.
MFKP_wiki.
É necessário efetuar o login.
From MFKP_wiki.
Mapping and assessing the condition of Europe's ecosystems: progress and challenges - EEA contribution to the implementation of the EU Biodiversity Strategy to 2020.
Pam Berry, Alison Smith, Ric Eales, Liza Papadopoulou, Markus Erhard, Andrus Meiner, Annemarie Bastrup-Birk, Eva Ivits, Eva R. Gelabert, Gorm Dige, Jan-Erik Petersen, Johnny Reker, Marie Cugny-Seguin, Peter Kristensen, Christine Estreguil, Marco Fritz, Dania A. Malak, Ana Marín, Christoph Schröder, Celia Garcia-Feced, Doug Evans, Sophie Conde, Ben Delbaere, Sandra Naumann, McKenna Davis, Holger Gerdes, Andreas Graf, Arjen Boon, Beth Stoker, Anne Teller, Patrick Murphy, Nicholas Banfield, Ole Ostermann, Andrzej Mizgajski, Adam Mickiewicz, Fernando S. Martin, Andre Jol, Anke Lükewille, Beate Werner, Carlos Romao, Daniel Desaulty, Frank W. Larsen, Geertrui Louwagie, Nihat Zal, Sylwia Gawronska, Ronan Uhel, Trine Christiansen.
edited by: Pam Berry, Alison Smith, Ric Eales, Liza Papadopoulou, Markus Erhard, Andrus Meiner.
The following text is a small excerpt from the original publication. Within the general INRMM-MiD goal of indexing useful meta-information on INRMM related publications, this excerpt is intended as a handy summary of some potentially interesting aspects of the publication. However, the excerpt is surely incomplete and some key aspects may be missing or their correct interpretation may require the full publication to be carefully read. Please, refer to the full publication for any detail.
Executive summary. We depend on healthy and resilient ecosystems to continue to deliver a range of essential services, such as food, water, clean air and recreation, into the future. However, our natural capital is being lost to or degraded by pressures such as pollution, climate change, overexploitation and urban development. The EU Biodiversity Strategy to 2020 therefore sets a target to maintain and enhance ecosystems and their services by establishing green infrastructures and restoring at least 15 % of degraded ecosystems by 2020. Mapping ecosystems and their condition is essential for measuring progress towards this target.
This report synthesises the European Environment Agency's (EEA's) work on ecosystem mapping and assessment over the last few years. The EEA approach builds on the work of the Mapping and Assessment of Ecosystems and their Services (MAES) initiative, a collaboration between the European Commission, the EEA and Member States, which developed an analytical framework for assessment based on the DPSIR framework (Drivers, Pressures, State, Impact and Response). This framework allows an understanding of the causal chain of connections from human actions to impacts on the environment. For example, drivers such as increased consumption create pressures such as pollution and habitat loss, which affect the state (condition) of ecosystems and their ability to provide services essential for human well-being. Mapping and assessment of ecosystems aims to analyse the pressures and their effects on the condition of ecosystems, so that policymakers can design suitable responses.
The challenge is to implement this framework using the data and other information that are available. There is a large amount of data and information, but much of it is not available for all regions or all ecosystems, or it is based on inconsistent classifications. Therefore the EEA has devoted considerable effort to assessing the existing data and information and building a feasible methodology around it.
The EEA's approach therefore consists of the following stages:
1 ▹ developing a suitable typology (classification) of broad ecosystem types to be used as the basis of the analysis, following the MAES approach and based on EUNIS (European Nature Information System) habitat classes and Corine (Coordination of Information on the Environment) land cover data;
2 ▹ mapping the physical extent of these ecosystems across Europe;
3 ▹ assessing the pressures acting on ecosystems, classified into five main groups — habitat change, climate change, overexploitation of resources, invasive alien species, and pollution or nutrient enrichment;
4 ▹ assessing the current condition of ecosystems using data from the Habitats Directive (EC, 1992), the Birds Directive (EC, 2009), the Water Framework Directive (EC, 2000), the Marine Strategy Framework Directive (EC, 2008a) and other sources (e. g. soil quality);
5 ▹ investigating how to use available information on the relationship between pressures and biodiversity to map potential impacts of individual pressures on ecosystems, and exploring methods of weighting and summing multiple pressures onto a single map to assess their combined effect on biodiversity, environmental quality and ecosystem service delivery.
The last step is at an early stage of development because of a lack of empirical evidence and is therefore only briefly mentioned in this report.
This report describes the stages of the methodology, with a focus on data requirements, and then presents the ecosystem map for Europe. Analysis of the underlying data reveals that many ecosystems are highly concentrated in a small number of countries, which could increase their vulnerability to environmental change, and a substantial proportion of the most vulnerable ecosystems are not protected within Natura 2000 sites, Marine Protected Areas or equivalent zones.
The main body of the report then applies the first four stages of the methodology to each of eight broad ecosystem types in Europe: urban, cropland, grassland, heathland and shrub (reported jointly with sparsely vegetated land), woodland and forest, wetlands, freshwater, and marine (the four MAES marine ecosystem classes were combined owing to lack of data on the separate classes). The report describes the main characteristics of each ecosystem and then assesses the pressures acting on it and the impact of those pressures on its component habitats and species. Finally, there is a section on policy response, which considers the tools available for policymakers to protect and restore the ecosystem and to manage the synergies and trade-offs between different ecosystem services.
The assessments reveal similarities and differences, but also strong linkages between many ecosystems. Most striking is the level of threat to European ecosystems — well over half of all the habitats and species covered by the Habitats Directive are assessed as being in 'unfavourable' condition, and their status is generally declining or stable, with only a small proportion 'improving'. This is true for all eight ecosystem types.
The EEA also carried out an initial assessment of current impacts and observed trends for the five main categories of pressures for each ecosystem. Habitat change, including loss and fragmentation, and pollution have had the greatest overall impact across ecosystems to date, and pressures are still increasing in more than 60 % of the cases. However, climate change pressures are projected to increase significantly across all ecosystems in future, which will probably lead to further impacts worsening their current condition.
Ecosystem assessment and mapping can form a valuable knowledge base for policymakers, enabling them to look at the spatial variations in the pressures on different ecosystems across Europe. Information on the resulting impacts of these pressures on ecosystem condition can confirm the need for a policy response to tackle the underlying causes of ecosystem damage, for example by protecting key habitats or controlling pollution. The knowledge base can also be applied in planning the most effective green infrastructure investments and developing methods for natural capital accounting, so that the value of ecosystems can be taken into account in national or corporate policy decisions. Both of these opportunities are described in the report.
Finally, the report identifies key gaps in knowledge and data that will need to be resolved to allow the future development of ecosystem assessment, including a lack of data on urban and marine ecosystems, a lack of understanding of the combined impacts of multiple pressures, a lack of detailed spatial data for mapping impacts on biodiversity, and a lack of understanding of the links between ecosystem condition, biodiversity and ecosystem service delivery.
Digital Object Identifier.
Available versions (may include free-access full text)
Further search for available versions.
Publication metadata.
Digital preservation of this INRMM-MiD record.
Referências.
Adi Associates, 2018. Setting up of an Underwater Trail in the Marine Protected Area from Rdum Majjiesa to Rasir-Raheb. adi-associates/projects/settingupof-an-underwater-trail-in-themarine-protected-areafromrdum-majjiesa-to-ras-irraheb . Airoldi, L., Beck, M. W., 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology, (45) 345–405. Armson, D., Stringer, P., Ennos, A. R., 2018. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, (11) 245–255. Barker, C. G., Power, S. A., Bell, J. N. B., Orme, C. D. L., 2004. Effects of habitat management on heathland response to atmospheric nitrogen deposition. Biological Conservation, (120) 41–52. Berry, P. M., Brown, S., Chen, M., Kontogianni, A., Rolands, O., Simpson, G., Skourtos, M., 2018. Cross‑sectoral interactions of adaptation and mitigation measures. Climatic Change, (128) 381–393. BESAFE, 2018. BESAFE - Biodiversity and Ecosystem Services: Arguments for our future Environment. besafe-project . BirdLife International, 2004. Birds in the European Union: A status assessment. BirdLife International, Wageningen, the Netherlands. Bohn, U., Neuhäusel, R., 2003. Map of the natural vegetation of Europe. Landwirtschaftsverlag, Münster, Germany. Braat, L. C. (ed.), 2018. Mapping of Ecosystems and their Services in the EU and its Member States (MESEU), Synthesis 2018–2018. https://circabc. europa. eu/webdav/CircaBC/env/ecosystem_assesment/Library/2018%20MAES%20Hands%20On%20Workshops/MESEU-synthesis%20report-2018-2018_14012018.pdf . Brouwer, R., Brander, L., Kuik, O., Papyrakis, E. and Bateman, I., 2018. A synthesis of approaches to assess and value ecosystem services in the EU in the context of TEEB. Final Report to DG Environment of the European Commission . ec. europa. eu/environment/nature/biodiversity/economics/pdf/EU%20Valuation. pdf . Burkhard, B., Kroll, F., Nedkov, S., Müller, F., 2018. Mapping ecosystem service supply, demand and budgets. Ecological Indicators, (21) 17–29. CAISIE, 2018. Control of Aquatic Invasive Species and Restoration of Natural Communities in Ireland: Layman's report. caisie. ie/wp-content/uploads/2018/06/D-10.8-CAISIE-Laymans-Report1.pdf . CBD, 2018. Aichi Biodiversity Targets. Convention of Biological Diversity . cbd. int/sp/targets . CBD, 2018. Biodiversity glossary. Convention of Biological Diversity . cbd. int/cepa/toolkit/2008/doc/CBD-Toolkit-Glossaries. pdf . CBD, 2018. Ecosystem natural capital accounts: A quickstart package for implementing Aichi Biodiversity Target 2 on integration of biodiversity values in national accounting systems in the context of the SEEA experimental ecosystem accounts, CBD Technical Series No 77, Convention of Biological Diversity . cbd. int/doc/publications/cbd-ts-77-en. pdf . Christopherson, R. W., 1997. Geosystems: An introduction to physical geography, 3rd edition, Prentice Hall Inc., Upper Saddle River, NJ, USA. Chytrý, M., Pyšek, P., Wild, J., Pino, J., Maskell, L. C. and Vilà, M., 2009. European map of alien plant invasions, based on the quantitative assessment across habitats. Diversity and Distributions, (15) 98–107. Copernicus, 2018. Copernicus Land Monitoring Services. land. copernicus. eu . Costello, M. J., Wilson, S. P., 2018. Predicting the number of known and unknown species in European seas using rates of description: Predicting species diversity. Global Ecology and Biogeography, 20(2) 319–330. Council of Europe, 1979. Convention on the Conservation of European Wildlife and Natural Habitats . conventions. coe. int/Treaty/Commun/QueVoulezVous. asp? NT=104&CM=8&DF=&CL=ENG . Culhane, F. E., White, L. J., Robinson, L. A., Scott, P., Piet, G., Miller, D. C. M., van Overzee, H. M. J., Frid, C. L. J., 2018. Development of an operational EU policybased marine ecosystem (services) assessment framework, Deliverable 9, Report to the European Environment Agency from the University of Liverpool, Liverpool, United Kingdom. DAISIE, 2009. Handbook of alien species in Europe. Springer, Dordrecht, Germany, see also: Delivering Alien Invasive Species Inventory for Europe. europe-aliens . DAISIE, 2018. Factsheet Ophiostoma novo-ulmi, (europe-aliens/pdf/Ophiostoma_novo-ulmi. pdf)accessed 5 October 2018. Davidson, N. C., 2018. How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, (65) 934–941. Davies, C. E., Moss, D., Hill, M. O., 2004. EUNIS habitat classification, revised 2004 (eunis. eea. europa. eu/upload/EUNIS_2004_report. pdf accessed 6 March 2018. Davies, Z. G., Edmondson, J. L., Heinemeyer, A., Leake, J. R., Gaston K. J., 2018. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. Journal of Applied Ecology , https://doi/10.1111/j.1365–2664.2018.02021.x . De Groot, R. S., Alkemade, R., Braat, L., Hein, L. and Willemen, L., 2018. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, (7) 260–272. De Vries, F. T., van Groenigen, J. W., Hof, E., Bloem, J., 2018. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biology and Biochemistry, (43) 997–1 005. Defra, 2018. Natural capital accounting in the UK and policy applications: An overview June 2018, Draft paper by Defra for consideration by Natural Capital Project Board (4 July 2018), Department for Environment, Food & Rural Affairs, London, United Kingdom. Deutsch, C., Brix, H., Ito, T., Frenzel, H., Thompson, L., 2018. Climate-forced variability of ocean hypoxia. Science, (333) 336–339 , https://doi/10.1126/science.1202422 . Dickson, B., Blaney, R. Miles, L., Regan, E., van Soesbergen, A., Väänänen, E., Blyth, S., Harfoot, M., Martin, C. S., McOwen, C., Newbold, T., van Bochove, J., 2018. Towards a global map of natural capital: Key ecosystem assets, United Nations Environment Programme, Nairobi, Kenya. Dover, J. W., Spencer, S., Collins, S., Hadjigeorgiou, I. and Rescia, A., 2018. Grassland butterflies and low intensity farming in Europe. Journal of Insect Conservation, (15) 129–137. EC, 1981. Council Decision 81/462/EEC of 11 June 1981 on the conclusion of the Convention on long-range transboundary air pollution . eur-lex. europa. eu/legal-content/EN/TXT/HTML/?uri=URISERV:l28162&from=EN . EC, 1991. Council Directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC) . eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:31991L0676 . EC, 1991. Council Directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment . eur-lex. europa. eu/legal-content/EN/TXT/HTML/?uri=URISERV:l28008&from=EN . EC, 1992. Habitats Directive: Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora . eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:31992L0043 . EC, 2000. Water Framework Directive: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy . eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 . EC, 2001. National Emission Ceilings Directive 2001/81/EC (NECD) . eur-lex. europa. eu/legal-content/EN/TXT/?uri=OJ:L:2001:309:0022:0030:EN:PDF . EC, 2003. Council Decision 2003/507/EC of 13 June 2003 on the accession of the European Community, to the Protocol to the 1979 Convention on Long‑Range Transboundary Air Pollution to Abate Acidification, Eutrophication and Ground-Level Ozone . eur-lex. europa. eu/legal-content/EN/TXT/?uri=celex:32003D0507 . EC, 2007. LIFE and Europe's wetlands — Restoring a vital ecosystem. ec. europa. eu/environment/life/publications/lifepublications/lifefocus/nat. htm#wetlands . EC, 2007. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks . eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:32007L0060 . EC, 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) . eur-lex. europa. eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32008L0056&from=EN . EC, 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe . eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:32008L0050 . EC, 2008. LIFE and Europe's grasslands: Restoring a forgotten habitat. Publications Office of the European Union, Luxembourg. EC, 2009. Bird Directive: Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds . eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:32009L0147 . EC, 2018. LIFE building up Europe's green infrastructure. Addressing connectivity and enhancing ecosystem functions . ec. europa. eu/environment/life/publications/lifepublications/lifefocus/documents/green_infra. pdf . EC, 2018. EU Timber Regulation: Regulation (EU) No 995/2018 of the European Parliament and of the Council of 20 October 2018 laying down the obligations of operators who place timber and timber products on the market . eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:32018R0995 . EC, 2018. Directive 2018/75/EU of the European Parliament and of the Council of 24 November 2018 on industrial emissions (integrated pollution prevention and control) . eur-lex. europa. eu/legal-content/EN/TXT/HTML/?uri=URISERV:ev0027&from=EN . EC, 2018. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions 'Our life insurance, our natural capital: an EU biodiversity strategy to 2020' (COM(2018) 244 final, 3.5.2018). eur-lex. europa. eu/LexUriServ/LexUriServ. do? uri=COM:2018:0244:FIN:EN:PDF . EC, 2018. Regulation (EU) No 691/2018 of the European Parliament and of the Council of 6 July 2018 on European environmental economic accounts . eur-lex. europa. eu/LexUriServ/LexUriServ. do? uri=OJ:L:2018:192:0001:0016:EN:PDF . EC, 2018. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions 'A blueprint to safeguard Europe's water resources'. eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:52018DC0673 . EC, 2018. Rural development in the European Union — Statistical and economic information — 2018 . ec. europa. eu/agriculture/statistics/ruraldevelopment/2018/ . EC, 2018. The multifunctionality of green infrastructure, Science for Environment Policy, In-depth report . ec. europa. eu/environment/nature/ecosystems/docs/Green_Infrastructure. pdf . EC, 2018. Implementation of the WFD. Good practices as identified by the Member States . ec. europa. eu/environment/archives/water/implrep2007/pdf/good_examples. pdf . EC, 2018. The Habitats Directive Celebrating 20 years of protecting biodiversity in Europe . ec. europa. eu/environment/nature/pdf/20yrs_brochure. pdf . EC, 2018. Building a green infrastructure for Europe . ec. europa. eu/environment/nature/ecosystems/docs/green_infrastructure_broc. pdf . EC, 2018. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions 'Green infrastructure (GI) — Enhancing Europe's natural capital' (COM/2018/0249 final). eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:52018DC0249 . EC, 2018. Decision No 1386/2018/EU of the European Parliament and of the Council of 20 November 2018 on a General Union Environment Action Programme to 2020 'Living well, within the limits of our planet'. eur-lex. europa. eu/legal-content/EN/TXT/?uri=celex:32018D1386 . EC, 2018. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions 'A new EU Forest Strategy: For forests and the forest-based sector' (COM(2018) 659 final, 20.9.2018). eur-lex. europa. eu/procedure/EN/1041237 . EC, 2018. Best LIFE Environment projects 2018, European Commission, Publications Office of the European Union, Luxembourg. EC, 2018. Best LIFE Nature projects 2018, European Commission, Publications Office of the European Union, Luxembourg. EC, 2018. Commission Implementing Decision of 19 March 2018 on the adoption of the LIFE multiannual work programme for 2018–17 (2018/203/EU) . eur-lex. europa. eu/legal-content/EN/TXT/?uri=OJ:JOL_2018_116_R_0001 . EC, 2018. Communication from the Commission to the European Parliament and the Council 'Concerning a consultation on Fishing Opportunities for 2018 under the Common Fisheries Policy' (COM(2018) 388 final). ec. europa. eu/dgs/maritimeaffairs_fisheries/consultations/fishing-opportunities-2018/doc/com-2018–388_en. pdf . EC, 2018. EU biodiversity targets and related global Aichi targets . biodiversity. europa. eu/policy/target-1-and-related-aichi-targets . EC, 2018. Regulation (EU) No 1143/2018 of the European Parliament and of the Council of 22 October 2018 on the prevention and management of the introduction and spread of invasive alien species . eur-lex. europa. eu/legal-content/EN/TXT/?qid=1415116378291&uri=OJ:JOL_2018_317_R_0003 . EC, 2018. Directive 2018/89/EU of the European Parliament and of the Council of 23 July 2018 establishing a framework for maritime spatial planning . eur-lex. europa. eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0089&from=EN . EC, 2018. Regulation (EU) No 538/2018 of the European Parliament and of the Council of 16 April 2018 amending Regulation (EU) No 691/2018 on European environmental economic accounts . eur-lex. europa. eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0538&from=EN . EC, 2018. Mid-term review of the EU Biodiversity Strategy to 2020 — EU assessment of progress towards the targets and action . ec. europa. eu/environment/nature/biodiversity/comm2006/pdf/mid_term_review_summary. pdf . EC, 2018. Europe 2020 targets . ec. europa. eu/europe2020/europe-2020-in-a-nutshell/targets/index_en. htm . EC, 2018. Report from the Commission to the European Parliament and the Council, the mid-term review of the EU Biodiversity Strategy to 2020. COM(2018) 478 final . eur-lex. europa. eu/legal-content/EN/TXT/?uri=CELEX:52018DC0478 . EC, 2018. Mapping and Assessment of Ecosystems and their Services (MAES) . ec. europa. eu/environment/nature/knowledge/ecosystem_assessment/index_en. htm . EC, 2018. Nature based solution . ec. europa. eu/research/environment/index. cfm? pg=nbs . EC, 2018. Urban development . ec. europa. eu/regional_policy/en/policy/themes/urban-development/ . EC, 2018. Soil . ec. europa. eu/environment/soil/index_en. htm . EC, 2018. Maritime affairs — maritime spatial planning . ec. europa. eu/maritimeaffairs/policy/maritime_spatial_planning/index_en. htm . EC, 2018. Agriculture and Rural Development: Implementation of the CAP reform . ec. europa. eu/agriculture/cap-post-2018/implementation/index_en. htm . EC, 2018. Horizon 2020 — The EU Framework Programme for Research and Innovation . https://ec. europa. eu/programmes/horizon2020 . EC, 2018. Ecosystem Assessment . ec. europa. eu/environment/nature/knowledge/ecosystem_assessment/maes_2018.htm . EC, ERA-Net, 2018. BiodivERsA – ERA-NET joint call 2018. biodiversa/741 . ECNC, 2018. European ecosystems: Knowledge on their state and functioning . projects. eionet. europa. eu/eea-ecosystem-assessments/library/report_europeanecosystems-state-and-functioning/european_ecosystem_state_functioning_dec-2018 . ECNC, 2018. Mapping of Ecosystems and their Services in the EU and its Member States (MESEU) . ecnc/projects/ecosystem-services-and-biodiversityassessment/mapping-of-ecosystems-and-their-services . Ecotec, NENW, 2008. The economic benefits of green infrastructure: The public and business case for investing in green infrastructure and a review of the underpinning evidence, Commissioned from ECOTEC by The Mersey Forest on behalf of Natural Economy Northwest . forestry. gov. uk/pdf/nweeconomicbenefitsofgideveloping. pdf/%24FILE/nweeconomicbenefitsofgideveloping. pdf . EEA, 2018. EU 2018 biodiversity baseline, EEA Technical report No 12/2018, European Environment Agency . eea. europa. eu/publications/eu-2018-biodiversity-baseline . EEA, 2018. Biodiversity — 10 messages for 2018, European Environment Agency . eea. europa. eu/publications/10-messages-for-2018 . EEA, 2018. Indicator Agriculture (SEBI 019): Nitrogen balance. European Environment Agency . eea. europa. eu/data-and-maps/indicators/agriculturenitrogen-balance/agriculture-nitrogen-balanceassessment-published . EEA, 2018. The European environment: State and outlook 2018, Land use, European Environment Agency . eea. europa. eu/soer/europe/land-use/at_download/file . EEA, 2018. Assessing biodiversity in Europe — the 2018 report. European Environment Agency . eea. europa. eu/publications/assessing-biodiversity-ineurope-84 . EEA, 2018. An experimental framework for ecosystem capital accounting in Europe, EEA Technical report No 13/2018, European Environment Agency . eea. europa. eu/publications/an-experimentalframework-for-ecosystem . EEA, 2018. Landscape fragmentation in Europe, EEA Report No 2/2018, European Environment Agency . eea. europa. eu/publications/landscapefragmentation-in-europe . EEA, 2018. Green infrastructure and territorial cohesion: The concept of green infrastructure and its integration into policies using monitoring systems, EEA Technical report No 18/2018, European Environment Agency, . eea. europa. eu/publications/greeninfrastructure-and-territorial-cohesion . EEA, 2018. Streamlining European biodiversity indicators 2020: Building a future on lessons learnt from the SEBI 2018 process, EEA Report No 11/2018, European Environment Agency . eea. europa. eu/publications/streamlining-european-biodiversityindicators-2020 . EEA, 2018. Climate change, impacts and vulnerability in Europe 2018: An indicator-based report, EEA Report No 12/2018, European Environment Agency . eea. europa. eu/publications/climate-impacts-andvulnerability-2018 . EEA, 2018. European waters — Assessment of status and pressures 2018, EEA Report No 8/2018, European Environment Agency . eea. europa. eu/publications/european-waters-assessment-2018 . EEA, 2018. The impacts of invasive alien species in Europe, EEA Technical report No 16/2018, European Environment Agency . eea. europa. eu/publications/impacts-of-invasive-alien-species . EEA, 2018. Urban adaptation to climate change in Europe, EEA Report No 2/2018, European Environment Agency (eea. europa. eu/publications/urbanadaptation-to-climate-change) accessed 12 December 2018 EEA, 2018. Protected areas in Europe — An overview, EEA Report No 5/2018, European Environment Agency . eea. europa. eu/publications/protectedareas-in-europe-2018 . EEA, 2018. Towards efficient use of water resources in Europe, EEA Report No 1/2018, European Environment Agency . eea. europa. eu/publications/towards-efficient-use-of-water . EEA, 2018. Invasive alien species indicators in Europe — A review of streamlining European biodiversity (SEBI) Indicator 10, EEA Technical report 15/2018, European Environment Agency . eea. europa. eu/publications/streamlining-european-biodiversityindicators-sebi . EEA, 2018. Land and Ecosystem Accounting (LEAC). eea. europa. eu/themes/landuse/interactive/land-and-ecosystem-accounting-leac . EEA, 2018. Environmental indicator report 2018 — Natural resources and human well-being in a green economy, European Environment Agency . eea. europa. eu/publications/environmental-indicator-report-2018 . EEA, 2018. Europe's agriculture: How to make food affordable, healthy and 'green'. European Environment Agency . eea. europa. eu/articles/europe2019sagriculture-how-to-make . EEA, 2018. Effects of air pollution on European ecosystems — Past and future exposure of European freshwater and terrestrial habitats to acidifying and eutrophying air pollutants. EEA Technical report No 11/2018, European Environment Agency . eea. europa. eu/publications/effects-of-air-pollution-on . EEA, 2018. Marine messages: Our seas, our future — moving towards a new understanding, European Environment Agency Brochure No 1/2018, European Environment Agency . eea. europa. eu/publications/marine-messages/at_download/file . EEA, 2018. Trend in relative sea level at selected European tide gauge stations, European Environment Agency . eea. europa. eu/data-and-maps/figures/trend-inrelative-sea-level-1/ . EEA, 2018. Spatial analysis of green infrastructure in Europe, EEA Technical report No 2/2018, European Environment Agency . eea. europa. eu/publications/spatial-analysis-of-green-infrastructure . EEA, 2018. Annual European Union greenhouse gas inventory 1990–2018 and inventory report 2018, Submission to the UNFCCC Secretariat, EEA Technical report 9/2018, European Environment Agency (eea. europa. eu/publications/european-uniongreenhouse-gas-inventory-2018) accessed 12 December 2018 EEA, 2018. European ecosystem assessment: Concept, data, and implementation, EEA Technical report No 6/2018, European Environment Agency . eea. europa. eu/publications/european-ecosystemassessment . EEA, 2018. The European environment: State and outlook 2018 (including European briefings: Agriculture, Biodiversity, Forests, Freshwater, Hydrological systems, Land systems, Marine, Maritime activities, Soil, Urban systems, Natural capital and ecosystem services), European Environment Agency . eea. europa. eu/soer . EEA, 2018. State of Europe's seas: Our seas our future. EEA Report No 2/2018, European Environment Agency (eea. europa. eu/publications/state-ofeuropes-seas) accessed 12 December 2018 EEA, 2018. State of nature in the EU: Results from the reporting under the Nature Directives 2007–2018, EEA Technical report No 2/2018, European Environment Agency (eea. europa. eu/publications/stateof-nature-in-the-eu) accessed 12 December 2018 EEA, 2018. Indicator (CSI 005): Exposure of ecosystems to acidification, eutrophication and ozone. European Environment Agency . eea. europa. eu/data-and-maps/indicators/exposure-of-ecosystems-toacidification-3/assessment . EEA, 2018. Exploring nature-based solutions — The role of green infrastructure in mitigating the impacts of weather - and climate change-related natural hazards, EEA Technical report No 12/2018, European Environment Agency . eea. europa. eu/publications/exploring-nature-based-solutions-2018 . EEA, 2018. EU 2018 biodiversity baseline — Adapted to the MAES typology (2018), EEA Technical report No 9/2018, European Environment Agency . eea. europa. eu//publications/eu-2018-biodiversity-baseline-revision . EEA, 2018. Marine protected areas in Europe's seas — An overview and perspectives for the future. EEA Report No 3/2018, European Environment Agency . eea. europa. eu/publications/marine-protectedareas-in-europes/ . EEA, 2018. Water-retention potential of Europe's forests — A European overview to support natural water-retention measures. EEA Technical report No 13/2018, European Environment Agency . eea. europa. eu/publications/water-retention-potential-of-forests . EEA, 2018. MAES catalogue of case studies. European Environment Agency . biodiversity. europa. eu/maes/maes-catalogue-of-case-studies . EEA, 2018. MAES digital atlas. European Environment Agency . biodiversity. europa. eu/maes/maes-digitalatlas . EEA, 2018. EUNIS — European Nature Information System database. European Environment Agency . eunis. eea. europa. eu . EEA, 2018. BISE — Biodiversity Information System for Europe. European Environment Agency . biodiversity. europa. eu . EEA, 2018. Indicator CSI 014 and LSI 001: Land take. European Environment Agency . eea. europa. eu/data-and-maps/indicators/land-take-2/assessment-2 . EEA, 2018. Trends in marine non-indigenous species (MAR 002) — Assessment published March 2018, European Environment Agency . eea. europa. eu/dataand-maps/indicators/trends-in-marine-alien-speciesmas-2/assessment . EEA, 2018. Pathways of introduction of marine non‑indigenous species (MAR 003) — Assessment published Mar 2018, European Environment Agency . eea. europa. eu/data-and-maps/indicators/trends-in-marine-alien-species/assessment . EEA, 2018. Indicator APE 005: Heavy metal emissions. European Environment Agency . eea. europa. eu/data-and-maps/indicators/eea32-heavymetal-hm-emissions-1/assessment-4 . EEA, 2018. Indicator SEBI 023: Ecological footprint of European countries. European Environment Agency (eea. europa. eu/data-and-maps/indicators/ecological-footprint-of-european-countries/ecological-footprint-of-european-countries-2) accessed 12 December 2018 EEA, 2018. Indicator SEBI 018: Forest deadwood. European Environment Agency . eea. europa. eu/data-and-maps/indicators/forestdeadwood-1 . EEA, 2018. BISE (Biodiversity Information System for Europe): Rivers and lakes. European Environment Agency . biodiversity. europa. eu/topics/ecosystems-and-habitats/rivers-and-lakes . EEA, 2018. SEBI — Streamlining European Biodiversity Indicators, Indicator SEBI 014: Fragmentation of river systems. European Environment Agency . biodiversity. europa. eu/topics/sebi-indicators . EEA, 2018. Climate-ADAPT — European Climate Adaptation Platform section on . cities and towns. European Environment Agency . climate-adapt. eea. europa. eu/cities . EEA, 2018. Flood risks and environmental vulnerability — Exploring the synergies between floodplain restoration, water policies and thematic policies, EEA Report 1/2018, European Environment Agency . eea. europa. eu/publications/flood-risks-andenvironmental-vulnerability . EEA, 2018. Europe. s forests: Sustainable and multifunctional — Towards ecosystem based management in Europe. European Environment Agency, forthcoming. EEA, 2018. Urban sprawl in Europe. European Environment Agency, forthcoming. EEA, 2018. Evaluation of EU policies and their direct and indirect impact on land take and land degradation. European Environment Agency, forthcoming. EEA, MNHN, 2018. Terrestrial habitat mapping in Europe: An overview. EEA Technical report No 1/2018, European Environment Agency & Muséum National d'Histoire Naturelle. eea. europa. eu/publications/terrestrial-habitat-mapping-in-europe . Emmett, B., Ashmore, M., Britton, A., Broadmeadow, M., Bullock, J., Cape, N., Caporn, S. J. M., Carroll, J. A., Cooper, J. R., Cresser, M. S., Crossley, A., D'Hooghe, P., De Lange, I., Edmondson, J., Evans, C. D., Field, C., Fowler, D., Grant, H., Green, E., Griffiths, B., Haworth, B., 2007. Terrestrial umbrella: Effects of eutrophication and acidification on terrestrial ecosystem, Final report, NERC Centre for Ecology & Hydrology, CEH Project No C02613, DEFRA Contract No CPEA 18. ES-MEA, 2018. Spanish millennium ecosystem assessment. ecomilenio. es . ESMERALDA, 2018. ESMERALDA, Enhancing ecoSysteM sERvices mApping for poLicy and Decision mAking. esmeralda-project. eu . ESPON Climate, 2018. Climate change and territorial effects on regions and local economies, Scientific Report, version 31/5/2018, ESPON & IRPUD, TU Dortmund . espon. eu/export/sites/default/Documents/Projects/AppliedResearch/CLIMATE/ESPON_Climate_Final_Report-Part_C-ScientificReport. pdf . Estreguil, C., Caudullo, G., de Rigo, D., 2018. A proposal for an integrated modelling framework to characterise habitat pattern. Environmental Modelling & Software, (52) 176–191. https://doi/10.1016/j. envsoft.2018.10.011 . Estreguil, C., Caudullo, G., de Rigo, D., San-Miguel-Ayanz, J., 2018. Forest landscape in Europe: Pattern, fragmentation and connectivity. EUR - Scientific and Technical Research 25717 (JRC 77295), 18pp. https://doi/10.2788/77842 . ETC/BD, 2018. Information note on the content and characteristics of the EU Article 17 data - Descriptive and spatial databases for the period 2001–2006. eea. europa. eu/data-and-maps/data/article-17-database-habitats-directive-92-43-eec/content-andcharacteristics-of-the/contextual-information-to-helpan/download . ETC/BD, 2018. Integrated approaches for wetland conservation and management, 21 pages, 10 December 2018. ETC/BD, 2018. Final database on links between species/habitat-types and broad ecosystems . eea. europa. eu/data-and-maps/data/linkages-of-speciesand-habitat/further-documentation/final-database-onlinks-between . ETC/ICM, 2018. Freshwater Ecosystem Assessment: Cross-walk between the Water Framework Directive and Habitats Directive types, status and pressures, ETC/ICM Technical Report 2/2018 . icm. eionet. europa. eu/ETC_Reports/FreshwaterEcosystemAssessmentReport_201809 . ETC/ICM, 2018. Use of freshwater resources in Europe Supplementary document to the draft indicator sheet CSI018 Version 3 . forum. eionet. europa. eu/nrc-eionet-freshwater/library/other-reports-andassessments/report-wq-data-wa-and-csi018-v3.18-clean . ETC/SIA, 2018. Available data for mapping and assessing ecosystems in Europe, . projects. eionet. europa. eu/eea-ecosystem-assessments/library/workingdocument-data-availability/ecosystem-assessmentdata-availability_report_03-june-2018 . ETC/SIA, 2018. Available knowledge for European ecosystems assessment: Overview and data specifications, . projects. eionet. europa. eu/eea-ecosystemassessments/library/working-document-towardsecosystem-asssessment-methodology/eu-wideassessment-ecosystems-and-conditions . ETC/SIA, 2018. Developing conceptual framework for ecosystem mapping, . projects. eionet. europa. eu/eea-ecosystem-assessments/library/draft-ecosystemmap-europe/es_mapping_draft_report-terrestrialecosystems . ETC/SIA, 2018. Developing conceptual framework for ecosystem mapping and ecosystem status indicator: Mapping marine ecosystems, . projects. eionet. europa. eu/eea-ecosystem-assessments/library/draftecosystem-map-europe/es_mapping_draft_reportmarine-ecosystems . ETC/SIA, 2018. Indicators to assess condition and major pressures on agro-ecosystems in Europe. projects. eionet. europa. eu/eea-ecosystem-assessments/library/working-documents-and-maps-ecosystem-pressures/deliverables/final_reports_ecosystempressures/final_reports_ecosystempressures/3.finalreport_task18413_ecosystempressure_agroecosystems/download/en/1/3.Finalreport_task18413_ecosystempressure_agroecosystems. docx . ETC/SIA, 2018. Impacts on the functional traits of European ecosystems biodiversity, 77 pages, 18 December 2018. ETC/SIA, 2018. Towards a pan-European ecosystem assessment methodology, . projects. eionet. europa. eu/eea-ecosystem-assessments/library/working-document-towards-ecosystem-asssessmentmethodology/ecosystem-assessment-methodology_report_nov_2018 . ETC/SIA, 2018. Assessment of European ecosystem pressures — concept, data, and methodology, . projects. eionet. europa. eu/eea-ecosystemassessments/library/working-documentsand-maps-ecosystem-pressures/deliverables/final_reports_ecosystempressures/final_reports_ecosystempressures/1.finalreport_task18413_ecosystempressure_concept_data_methodology . ETC/SIA, 2018. Nutrient enrichment and pollution related pressures on agricultural, grassland, heathland and forest ecosystems, . projects. eionet. europa. eu/eea-ecosystem-assessments/library/workingdocuments-and-maps-ecosystem-pressures/deliverables/final_reports_ecosystempressures/final_reports_ecosystempressures/8.finalreport_task18413_ecosystempressure_nutrientenrichment . ETC/SIA, 2018. Mapping marine ecosystems, . projects. eionet. europa. eu/eea-ecosystem-assessments/library/draft-ecosystem-map-europe/es_mapping_draft_report-marine-ecosystems . EU-BON, 2018. EU BON — Building the European Biodiversity Observation Network. eubon. eu . European Heathland Workshop, 2018. North western dune and lowland heaths — natural processes and management, 13th European Heathland Workshop, Denmark, 23 to 28 June 2018 . publications. naturalengland. uk/file/5815805149184000 . Eurostat, 2018. Area under organic farming. ec. europa. eu/eurostat/tgm/table. do? tab=table&init=1&language=en&pcode=tsdpc440&plugin=1 . FAO, 2018. Global forest resources assessment 2018, Main Report, FAO Forestry Paper 163 . fao/docrep/013/i1757e/i1757e. pdf . FAO, 2018. FRA 2018, Terms and definitions, Forest Resources Assessment Working Paper 180, December 2018 . fao/docrep/017/ap862e/ap862e00.pdf . Firbank, L., Bradbury, R., 2018. Introduction to the UK National Ecosystem Assessment, in: The UK National Ecosystem Assessment Technical Report, UK National Ecosystem Assessment, UNEP-WCMC, Cambridge, United Kingdom. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C., J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., Snyder, P. K., 2005. Global consequences of land use. Science, (309)5739, 570–574 , https://doi/10.1126/science.1111772 . Forest Europe, 2018. Sustainable Forest Management (SFM) criteria . foresteurope/sfm_criteria/criteria . Forest Europe, UNECE, FAO, 2018. State of Europe's forests 2018 — Status and trends in sustainable forest management in Europe. foresteurope/documentos/State_of_Europes_Forests_2018_Report_Revised_November_2018.pdf . Forest Europe, UNECE, FAO, 2018. State of Europe's forests 2018 — Status and trends in sustainable forest management in Europe. foresteurope/state-europes-forests-2018-report . Forestry Commission, 2018. Dutch elm disease (Ophiostoma novo-ulmi) . forestry. gov. uk/website/forestry. nsf/byunique/INFD-9CAHJ2 . Forestry Commission, 2006. Managing and controlling invasive rhododendron . forestry. gov. uk/PDF/fcpg017.pdf/$FILE/fcpg017.pdf . Galil, B. S., Nehring, S., Panov, V., 2007. Waterways as invasion highways — Impact of climate change and globalization. in: Nentwig, W. (ed.), Biological invasions, Ecological Studies No 193, Springer, Dordrecht, Germany, 57–74. Gallai, N., Salles, J., Settele, J., Vaissière, B. E., 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, (68) 810–821. Gardi, C., Panagos, P., Van Liedekerke, M., Bosco, C. and De Brogniez, D., 2018. Land take and food security: Assessment of land take on the agricultural production in Europe. Journal of Environmental Planning and Management, (58) 5 , https://doi/10.1080/09640568.2018.899490 . Geijzendorffer, I. R., Regan, E. C., Pereira, H. M., Brotons, L., Brummitt, N., Gavish, Y., Haase, P., Martin, C. S., Mihoub, J.-B., Secades, C., Schmeller, D. S., Stoll, S., Wetzel, F. T., Walters, M., 2018. Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective. Journal of Applied Ecology. ">https://doi/10.1111/1365-2664.12417. Gómez-Baggethun, E., Martín-López, B., Barton, D., Braat, L., Kelemen, E., García-Llorente, M., Saarikoski, H., van den Bergh, J., Arias, P. Berry, P., Potschin, M., Dunford, R., Keene, H., Schröter-Schlaack, C. and Harrison P., 2018. State-of-the-art report on integrated valuation of ecosystem services . openness-project. eu/sites/default/files/Deliverable%204%201_Integrated-Valuation-Of-Ecosystem-Services. pdf . Goode, D., 2006. Green Infrastructure, Report to the Royal Commission on Environmental Pollution, London. . rcep. uk/reports/26-urban/documents/green-infrastructure-david-goode. pdf . Goulson, D., 2018. An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, (50) 977–987 , https://doi/10.1111/1365– 2664.12111 . Gustavsson, E., Dahlström, A., Emanuelsson, M., Wissman, J., Lennartsson T., 2018. Combining historical and ecological knowledge to optimise biodiversity conservation in semi-natural grassland. In: Pujol, J. L. (ed.), The importance of biological interactions in the study of biodiversity, InTech . intechopen/books/the-importance-of-biological-interactionsin-the-study-of-biodiversity/combining-historicaland-ecological-knowledge-to-optimise-biodiversityconservation-in-semi-natural - . Haberl, H., Gaube, V., Díaz-Delgado, R., Krauze, K., Neuner, A., Peterseil, J., Singh, S. J. and Vadineanu, A., 2009. Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long‑term socio‑ecological research platforms. Ecological Economics, 68(6) 1 797–1 812. Haines-Young, R., Potschin, M., 2018. Common Classification of Ecosystem Services (CICES): Consultation on version 4, August–December 2018, Report to the European Environment Agency . https://nottingham. ac. uk/CEM/pdf/CICES%20V43_Revised%20Final_Report_29012018.pdf . Haines-Young, R., Potschin, M., Kienast, F., 2018. Indicators of ecosystem service potential at European scales: Mapping marginal changes and trade-offs. Ecological Indicators, (21) 39–53. Harrison, P. A., Berry, P. M., Simpson, G., Haslett, J. R., Blicharska, M., Bucur, M., Dunford, R., Egoh, B., Garcia‑Llorente, M., Geam, N., Geertsema, W., Lommelen, E., Meiresonne, L. and Turkelboom, F., 2018. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosystem Services, (9) 191–203. HEATH Project, 2018. The HEATH project (Heathland, Environment, Agriculture, Tourism, Heritage). theheathproject. uk . Heiskanen, A. S., Feld, C., Huttula, T., Poikane, S. and van de Bund, W. (eds.), 2018. Deliverable D7.2–6: End‑user summary and booklet, Water bodies in Europe — Integrative Systems to assess Ecological status and Recovery (WISER) . wiser. eu/download/D7.2-6.pdf . Hering, D., Carvalho, L., Argillier, C., Beklioglu, M., Borja, A., Cardoso, A. C., Duel, H., Ferreira, T., Globevnik, L., Hanganu, J., Hellsten, S., Jeppesen, E., Kodeš, V., Lyche Solheim, A., Nõges, T., Ormerod, S., Panagopoulos, Y., Schmutz, S.,Venohr, M., Birk, S., 2018. Managing aquatic ecosystems and water resources under multiple stress — An introduction to the MARS project. Science of the Total Environment, (503–504) 10–21. Herzog, F., Schüepp, C., 2018. Are land sparing and land sharing real alternatives for European agricultural landscapes?. Aspects of Applied Biology, (121) 109–116. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., Hatziolos M. E., 2007. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science, (318) 1 737–1 742 , https://doi/10.1126/science.1152509 . Horswill, O., O'Sullivan, O., Phoenix, G. K., Lee, J. A. and Leake, J. R., 2008. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, (155) 336e349 , https://doi/10.1016/j. envpol.2007.11.006 . Howard, B. M., Braat, L., Young, J. C. and Hails, R. H., 2018. Biodiversity and ecosystem services: Arguments for our environment. BESAFE Deliverable 1.1: Building a framework of arguments for the value of biodiversity Report on the classification of arguments and the provisional framework . besafe-project/deliverables. php? P=4&SP=32 . IEEP, Milieu, 2018. The guide to multi-benefit Cohesion Policy investments in nature and green infrastructure, Report to the European Commission . ec. europa. eu/regional_policy/index. cfm/en/information/publications/guides/2018/guide-to-multi-benefitcohesion-policy-investments-in-nature-and-greeninfrastructure . Iglesias, A., Garrote, L., Quiroga, S., Moneo, M., 2018. A regional comparison of the effects of climate change on agricultural crops in Europe. Climatic Change, (112) 29–46. INBO, 2018. Natuurrapport. (nara. be) accessed 12 December 2018. IPBES, 2018. Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). ipbes . IPCC, 2018. Climate change 2018: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. (eds.)), Cambridge University Press, Cambridge, United Kingdom. IUCN, 2018. European Red List of freshwater fishes, Publications Office of the European Union, Luxembourg. IUCN, 2018. European Red List of non-marine molluscs, Publications Office of the European Union, Luxembourg. IUCN, 2018. European Red List of vascular plants, Publications Office of the European Union, Luxembourg. IUCN, 2018. European Red List of freshwater fishes, Publications Office of the European Union, Luxembourg. Ivits, E., Cherlet, M., Horion, S. and Fensholt, R., 2018. Global biogeographical pattern of ecosystem functional types derived from earth observation data. Remote Sensing, (5) 3 305–3 330 , https://doi/10.3390/rs5073305 . Ivits, E., Cherlet, M., Sommer, S. and Mehl, W., 2018. Ecosystem Functional Units characterized by satellite observed phenology and productivity gradients: A case study for Europe. Ecological Indicators, (27) 17–28. , https://doi/10.1016/j. ecolind.2018.11.010 . JRC, DG ENV, 2018. Forest fires in Europe, Middle East and North Africa 2018 . forest. jrc. ec. europa. eu/media/cms_page_media/9/FireReport2018_final2pdf_2.pdf . JRC, 2018. European Soil Data Centre (ESDAC) — soil sealing. (esdac. jrc. ec. europa. eu/themes/soilsealing) accessed 13 January 2018 JRC, 2018. EASIN — European Alien Species Information Network. easin. jrc. ec. europa. eu/ . Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E., Çinar, M. E., Oztürk, B., Grabowski, M., Golani, D., Cardoso, A. C., 2018. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan‑European review. Aquatic Invasions (2018) Volume 9, Issue 4: 391–423 , doi: dx. doi/10.3391/ai.2018.9.4.01 . Kovats, R. S., Valentini, R., Bouwer, L. M., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell, M., Soussana, J.-F., 2018. Europe. in: Climate change 2018: Impacts, adaptation, and vulnerability. Part B: Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. (eds.)) Cambridge University Press, Cambridge, United Kingdom, 1 267–1 326. Kristensen, P., Globevnik, L., 2018. Small water bodies: Importance, threats and knowledge gaps. Biology and environment: Proceedings of the Royal Irish Academy, (114B) 281–287. Lammerant, J., Peters, R., Snethlage, M., Delbaere, B., Dickie, I., Whiteley, G., 2018. Implementation of 2020 EU Biodiversity Strategy: Priorities for the restoration of ecosystems and their services in the EU. Report to the European Commission, . ec. europa. eu/environment/nature/biodiversity/comm2006/pdf/2020/RPF. pdf#page=1&zoom=auto,-209,680 . Layke, C., Mapendembe, A., Brown, C., Walpole, M. and Winn, J., 2018. Indicators from the global and sub‑global Millennium Ecosystem Assessments: An analysis and next steps. Ecological Indicators, (17) 77–87. Lososová, Z., Chytrý, M., Tichý, L., Danihelka, J., Fajmon, K., Hájek, O., Kintrová, K., Kühn, I., Láníková, D., Otýpková, Z., Řehořek, V., 2018. Native and alien floras in urban habitats: A comparison across 32 cities of central Europe. Global Ecology and Biogeography, (21) 545–555. Lugato, E., Panagos, P. Bampa, F., Jones, A. and Montanarella, L., 2018. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology, (20) 313–326. MA, 2005. Ecosystems and human well-being: Synthesis, Millennium Ecosystem Assessment, Island Press, Washington, DC, USA . maweb/en/index. aspx . Maes, J., Barbosa, A., Baranzelli, C., Zulian, G., Batista e Silva, F., Vandecasteele, I., Hiederer, R., Liquete, C., Paracchini, M. L., Mubareka, S., Jacobs-Crisioni, C., Castillo, C. P., Lavalle, C., 2018. More green infrastructure is required to maintain ecosystem services under current trends in land-use change in Europe. Landscape Ecology, (30) 517–534 , https://doi/10.1007/s10980-014-0083-2 . Maes, J., Paracchini, M. L., Zuliana, G., Dunbar, M. B. and Alkemade, R., 2018. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biological Conservation, (155) 1–12. Maes, J., Teller, A., Erhard, M., Liquete, C., Braat, L., Berry, P., Egoh, B., Puydarrieux, P., Fiorina, C., Santos, F., Paracchini, M. L., Keune, H., Wittmer, H., Hauck, J., Fiala, I., Verburg, P. H., Condé, S., Schägner, J. P., San Miguel, J., Estreguil, C., Ostermann, O., Barredo, J. I., Pereira, H. M., Stott, A., Laporte, V., Meiner, A., Olah, B., Royo Gelabert, E., Spyropoulou, R., Petersen, J. E., Maguire, C., Zal, N., Achilleos, E., Rubin, A., Ledoux, L., Brown, C., Raes, C., Jacobs, S., Vandewalle, M., Connor, D., Bidoglio, G., 2018. Mapping and Assessment of Ecosystems and their Services. An analytical framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020, Publications office of the European Union, Luxembourg . ec. europa. eu/environment/nature/knowledge/ecosystem_assessment/pdf/MAESWorkingPaper2018,pdf . Maes, J., Teller, A., Erhard, M., Murphy, P., Paracchini, M. L., Barredo, J. I., Grizzetti, B., Cardoso, A., Somma, F., Petersen, J. E., Meiner, A., Royo Gelabert, E., Zal, N., Kristensen, P., Bastrup-Birk, A., Biala, K., Romao, C., Piroddi, C., Egoh, B., Fiorina, C., Santos, F., Naruševičius, V., Verboven, J., Pereira, H., Bengtsson, J., Gocheva, K., Marta-Pedroso, C., Snäll, T., Estreguil, C., San Miguel, J., Braat, L., Grêt-Regamey, A., Perez-Soba, M., Degeorges, P., Beaufaron, G., Lillebø, A., Abdul Malak, D., Liquete, C., Condé, S., Moen, J., Östergård, H., Czúcz, B., Drakou, E. G., Zulian, G. and Lavalle, C., 2018. Mapping and Assessment of Ecosystems and their Services. Indicators for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020, 2nd Report, Publications office of the European Union, Luxembourg . ec. europa. eu/environment/nature/knowledge/ecosystem_assessment/pdf/2ndMAESWorkingPaper. pdf . MARS, 2018. The MARS project — managing aquatic ecosystems and water resources under multiple stress. mars-project. eu . Matteson, K. C., Ascher, J. S., Langellotto, G. A., 2008. Bee richness and abundance in New York city urban gardens. Annals of the Entomological Society of America, (101) 140–150. McRoberts, R. E., Tomppo, E., Schadauer, K., Vidal, C., Ståhl, G., Chirici, G., Smith, W., B., 2009. Harmonizing national forest inventories. Journal of Forestry, (107) 179–187. McRoberts, R. E., Tomppo, E., Schadauer, K., Vidat, C., Stahl, G., Chirici, G., Lanz, A., Cienciala, E., Winter, S. and Brad Smith, W., 2009. Harmonizing National Forest Inventories. Journal of Forestry, p. 179–187, June 2009. Mediterranean Wetlands Observatory, 2018. Biodiversity — Status and trends of species in Mediterranean wetlands, Issue No 1, Thematic collection, Tour du Valat, France, . medwet/2018/04/mediterranean-wetlandsoutlook-2018/ . Menzel, A., 2000. Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology, (44) 76–81. Menzel, S., Kappel, C. V., Broitman, B. R., Micheli, F. and Rosenberg, A. A., 2018. Linking human activity and ecosystem condition to inform marine ecosystem based management. Aquatic Conservation: Marine and Freshwater Ecosystems, (23) 506–514. MEPA, 2018. MEPA to create first underwater trail for divers and snorklers. Malta Environment and Planning Authority . mepa. mt/outlook8-article1 . Mortimer, S. R., Turner, A. J., Brown, V. K., Fuller, R. J., Good, J. E. G., Bell, S. A. Stevens, P. A., Norris, D., Bayfield, N., Ward, L. K., 2000. The nature conservation value of scrub in Britain. JNCC Report No 308 . jncc. defra. gov. uk/page-2445 . Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. and Nemani, R. R., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature (386) 698–702. Natuurpunt, 2018. LIFE Visbeek. natuurpunt. be/life-visbeek-english . NCC, 2018. Second state of natural capital report . https://naturalcapitalcommittee/state-of-naturalcapital-reports. html . NCC, 2018. Towards a framework for defining and measuring changes in natural capital . https://nebula. wsimg/efc0de70bf88dea33ef3fe26747f7b76?AccessKeyId=68F83A8E994328D64D3D&disposition=0&alloworigin=1 . Nemani, R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. and Running, W., 2003. Climate driven increases in global terrestrial net primary production from 1982–1999. Science, (300)5625, 1 562–1 563. Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Borger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Diaz, S., Echeverria-Londono, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D., Laginha Pinto, M., Callum, D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H. R. P., Purves, D. W., Robinson, A., Simpson, J., Tuck, S. L., Weiher, E., White, H. J., Ewers, R. M., Mace, G. M., Scharlemann, J. P. W., Purvis, A., 2018. Global effects of land use on local terrestrial biodiversity. Nature, (520)7545, 45–50. Nilsson, J., Grennfelt, P., 1988. Critical loads for sulphur and nitrogen, Report from a Workshop held at Skokloster Sweden, 19–24 March 1988, Miljø Rapport 1988:15, Nordic Council of Ministers, Copenhagen, Denmark. NNSS, 2018. Rhododendron fact sheet. (nonnativespecies//factsheet/factsheet. cfm? speciesId=3004)) accessed 12 December 2018. Oke, T. R., 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, (108)455, 1–24. OPENNESS, 2018. OpenNESS — Operationalisation of Natural capital and Ecosystem ServiceS. openness-project. eu . OPERAS, 2018. OPERAs — Operational Potential of Ecosystem Research Applications. operasproject. eu/sites/default/files/resources/d3.1-edited. pdf . OPPLA, 2018. The OPPLA platform. oppla. eu . Parson, E. A., 1995. Integrated assessment and environmental policy-making, in pursuit of usefulness. Energy Policy, 23(4/5), 463–476. Peeters, A., 2009. Importance, evolution, environmental impact and future challenges of grasslands and grassland‐based systems in Europe. Grassland Science, (55) 113–125. Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J., Bruford, M. W., Brummitt, N., Butchart, S. H. M., Cardoso, A. C., Coops, N. C., Dulloo, E., Faith, D. P., Freyhof, J., Gregory, R. D., Heip, C., Höft, R., Hurtt, G., Jetz, W., Karp, D. S., McGeoch, M. A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J. P. W., Stuart, S. N., Turak, E., Walpole, M., Wegmann, M., 2018. Essential biodiversity variables. Science, (339)6117, 277–278. Peterlin, M., Boteler, B., Globevnik, L., Green, N., Jesus, A., Kunitzer, A., Lago, M., Palatinus, A., Piet, G. J., Prins, T., Spitteri, C., Stoker, B., Thomsen, F., Zenetos, A., 2018. Initial assessment of European seas based on Marine Strategy Framework Directive Article 8 reporting — Summary report, ETC/ICM Technical Report, European Topic Centre on Inland, Coastal and Marine Waters, Magdeburg, Germany. Petersen, J.-E. and Gocheva, K., forthcoming, EU reference document on natural capital accounting, prepared as part of the EU MAES (Mapping and Assessment of Ecosystems and their Services) process, revised draft for consultation, 6 January 2018 . projects. eionet. europa. eu/ecosystem-capitalaccounting/library/reference-document-natural-capitalaccounting/final-revised-reference-document-ncaconsultation-january-2018 . P-MEA, 2018. Portuguese millennium ecosystem assessment. millenniumassessment/documents_sga/Portugal%20MA_State_of_the_Assessment. pdf . Poff, N. L., Olden, J. D., Merritt, D. M. and Pepin, D. M., 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences, (104) 5 732–5 537. Prévosto, B., Kuiters, L., Bernhardt-Römermann, M., Dölle, M., Schmidt, W., Hoffmann, M., Uytvanck, J. V., Bohner, A., Kreiner, D., Stadler, J., Klotz, S., Brandl, R., 2018. Impacts of land abandonment on vegetation: Successional pathways in European habitats. Folia Geobotanica, (46) 303–325. Rapport, D., Hildén, M., 2018. An evolving role for ecological indicators: From documenting ecological conditions to monitoring drivers and policy responses. Ecological Indicators, (28) 10–15. Raudsepp-Hearne, C., Peterson, G. D. and Bennett, E. M., 2018. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences, (107) 5 242–5 247 . pnas/content/107/11/5242 . Robine, J.-M., Cheung, S. L. K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J.-P. and Herrmann, F. R., 2008. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, (331) 171–178. Rogers, A. D., Sumaila, U. R., Hussein, S., Baulcomb, C., 2018. The High Seas and Us: Understanding the Value of High‑Seas Ecosystems, Global Ocean Commission, Oxford, United Kingdom. Santos-Martín, F., Martín-López, B., García-Llorente, M., Aguado, M., Benayas, J., Montes, C., 2018. Unraveling the relationships between ecosystems and human wellbeing in Spain. PLoS ONE (8)9, e73249 , https://doi/10.1371/journal. pone.0073249 . Sayre, R., Dangermond, J., Frye, C., Vaughan, R., Aniello, P., Breyer, S., Cribbs, D., Hopkins, D., Nauman, R., Derrenbacher, W., Wright, D., Brown, C., Convis, C., Smith, J., Benson, L., Paco VanSistine, D., Warner, H., Cress, J., Danielson, J., Hamann, S., Cecere, T., Reddy, A., Burton, D., Grosse, A., True, D., Metzger, M., Hartmann, J., Moosdorf, N., Dürr, H., Paganini, M., DeFourny, P., Arino, O., Maynard, S., Anderson, M., Comer, P., 2018. A new map of global ecological land units — An ecophysiographic stratification approach, Association of American Geographers, Washington, DC, USA. Schwartz, M. D., Reed, B. C., 1999. Surface phenology and satellite sensor derived onset of greenness: An initial comparison. International Journal of Remote Sensing, (20) 3 451–3 457. Science for Environment Policy, 2018. Ecosystem services and the environment, In-depth Report No 11 produced for the European Commission, DG Environment, Science Communication Unit, University of the West of England, Bristol . ec. europa. eu/environment/integration/research/newsalert/pdf/ecosystem_services_biodiversity_IR11_en. pdf . Stevens, M., Demolder, H., Jacobs, S., Michels, H., Schneiders, A., Simoens, I., Spanhove, T., Van Gossum, P., Van Reeth, W., Peymen, J. (eds.), 2018. Flanders Regional Ecosystem Assessment: State and trends of ecosystems and their services in Flanders. Synthesis report, INBO. M.2018.7842756, Research Institute for Nature and Forest, Brussels, Belgium. Sundseth, K., Raeymaekers, G., 2006. Biodiversity and Nature 2000 in urban areas, Report to Bruxelles Environnement-IBGE/Leefmilieu Brussel-BIM . forumtools. biz/Fedenatur/upload/N2000inmajorEuropeancities. pdf . Tang , D., Zou , X., Liu, X., Liu, P., Zhamangulova, N., Xu, X., Zhao, Y., 2018. Integrated ecosystem health assessment based on eco-exergy theory: A case study of the Jiangsu coastal area. Ecological Indicators, (48) 107–119. TEEB, 2018. The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations, Edited by Pushpam Kumar, Earthscan, London and Washington . teebweb/our-publications/teeb-study-reports/ecological-and-economic-foundations/ . Tóth, G., 2018. Impact of land-take on the land resource base for crop production in the European Union. Science of the Total Environment, (435–436) 202–214. Turner R. K., Morse-Jones S., Fisher B., 2018. Ecosystem valuation — A sequential decision support system and quality assessment issues. Annals of the New York Academy of Sciences, (1185) 79–101. UK-NEA, 2018. UK National Ecosystem Assessment (UK‑NEA), UNEP-WCMC, LWEC . uknea. unep-wcmc . UN, 1992. Convention on Biological Diversity, Article 2, United Nations . https://cbd. int/convention/articles/default. shtml? a=cbd-02 . UN, 2018. World urbanization prospects: The 2018 revision, highlights, ST/ESA/SER. A/352, Department of Economic and Social Affairs, Population Division, United Nations, Washington, DC, USA. UN, 2018. Sustainable Development knowledge platform: Future We Want — Outcome document . https://sustainabledevelopment. un/futurewewant. html . UNEP, 2018. Natural capital declaration, United Nations Environment Programme . naturalcapitaldeclaration/the-declaration/# . UNEP, 2018. United Nations Environment Programme Global Environment Outlook (UNEP GEO-6). unep/geo . UNEP/MAP, 2018. State of the Mediterranean marine and coastal environment, UNEP/MAP — Barcelona Convention, Athens, 2018 . grida. no/publications/med . UNSD, 2018. UN Statistics Division: SEEA Experimental Ecosystem Accounting. unstats. un/unsd/envaccounting/eea_project/default. asp . UNSD, 2018. System of Environmental–Economic Accounting 2018, experimental ecosystem accounting, United Nations Statistics Division, Washington, DC, USA . unstats. un/unsd/envaccounting/seeaRev/eea_final_en. pdf . UNSD, 2018. UN Statistics Division: The System of National Accounts (SNA). unstats. un/unsd/nationalaccount/sna. asp . van Asselen, S., Verburg, P. H., Vermaat, J. E., Janse. J. H., 2018. Drivers of wetland conversion: A global metaanalysis. PLoS ONE, (8)11, e81292 , https://doi/10.1371/journal. pone.0081292 . Vihervaara, P., Kumpula, T., Ruokolainen, A., Tanskanen, A., Burkhard, B., 2018. The use of detailed biotope data for linking biodiversity with ecosystem services in Finland. International Journal of Biodiversity Science Ecosystem Services and Management, (8) 169–185. Wessels, K. J., Prince, S. D., Malherbe, J., Small, J., Frost, P. E., VanZyl, D., 2007. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. Journal of Arid Environments, 2007. (68) 271–297. Wessels, K., Steenkamp, K., vonMaltitz, G., Archibald, S., 2018. Remotely sensed vegetation phenology for describing and predicting the biomes of South Africa. Applied Vegetation Science, (II) 1–19 (dx. doi/10.1111/j.1654-109X. 2018.01100.x). WHO, 1999. Guidelines for Community Noise. who. int/docstore/peh/noise/guidelines2.html . Wilson, J. B., Peet, R. K., Dengler, J., Pärtel, M., 2018. Plant species richness: the world records. Journal of Vegetation Science, (23) 796–802. World Bank, 2018. WAVES — Wealth Accounting and the Valuation of Ecosystem Services. https://wavespartnership/en . WWF, 2018. Marine problems: Tourism & coastal development. wwf. panda/about_our_earth/blue_planet/problems/tourism . Zedler, J. B., Kercher, S., 2018. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences, (23) 432–452 , https://doi/10.1080/07352680490514673 . Zinke, A., 2018. Danube Parks — Strategy on conservation and navigation. danubeparks/files/781_DANUBEPARKS_ConservationNavigation. pdf . Zisenis, M., 2018. Alien plant species: A real fear for urban ecosystems. Urban Ecosystems, (18) 355–370. Zulian, G., Maes, J., Paracchini, M. L., 2018. Linking land cover data and crop yields for mapping and assessment of pollination services in Europe. Land, (2) 472–492.
Meta-information Database (INRMM-MiD).
This database integrates a dedicated meta-information database in CiteULike (the CiteULike INRMM Group) with the meta-information available in Google Scholar, CrossRef and DataCite. The Altmetric database with Article-Level Metrics is also harvested. Part of the provided semantic content (machine-readable) is made even human-readable thanks to the DCMI Dublin Core viewer. Digital preservation of the meta-information indexed within the INRMM-MiD publication records is implemented thanks to the Internet Archive.
The library of INRMM related pubblications may be quickly accessed with the following links. Overview: A minimal definition of Integrated Natural Resources Modelling and Management Go to the INRMM home page Browse by keyword Browse by author Browse by year Go to the INRMM Group in CiteULike. In this dedicated database editors may submit changes to the meta-information (login required). Inquiries may be sent to inrmm (at) maieutike .
INRMM-MiD was experimentally established by the Maieutike Research Initiative in 2008 and then improved with the help of several volunteers (with a major technical upgrade in 2018). This new integrated interface is operational since 2018.
Indicators for ecosystem assessments under action 5 of the eu biodiversity strategy to 2020
Dick J., et al., Cross-scale analysis of ecosystem services identified and assessed at local and European level, “Ecological Indicators” 2018 no. 38, p. 20–30.
Erhard M. et al., Mapping and Assessment of Ecosystems and their Services: Mapping and assessing the condition of Europe’s ecosystems – Progress and challenges, Publications office of the European Union, Luxembourg 2018.
Harrison P. A. et al., Linkages between biodiversity attributes and ecosystem services: A systematic review, “Ecosystem Services” 2018 no. 9, p. 191–203.
Hedden-Dunkhorst B., Braat L., Wittmer H., TEEB emerging at the country level: Challenges and opportunities, “Ecosystem Services” 2018 no. 14(37)
Kopperoinen L. et al., Ecosystem service mapping and assessment gaps in EU member states and recommendations to overcome them. Deliverable 2.2, EU Horizon 2020 ESMERALDA Project, Grant agreement No. 64 2007, 2018.
Maes J. et al., An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020, “Ecosystem Services” 2018 no. 17, p. 14–23.
Maes J. et al., Mapping and Assessment of Ecosystems and their Services. An analytical framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020, Publications office of the European Union, Luxembourg 2018.
Maes J. et al., Mapping and Assessment of Ecosystems and their Services: Indicators for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020, Publications office of the European Union, Luxembourg 2018.
Maes J. et al., Mapping and Assessment of Ecosystems and their Services: Urban ecosystems, Publications office of the European Union, Luxembourg 2018.
Maes J. et al., Mapping and Assessment of Ecosystems and their Services: Trends in ecosystems and ecosystem services in the European Union between 2000 and 2018,
Publications office of the European Union, Luxembourg 2018.
McKinnon M. C. et al., Sustainability: Map the evidence, “Nature” 2018 vol. 528, no. 7581.
Millennium Ecosystem Assessment, Ecosystems and Human Well-being: Biodiversity Synthesis, Washington 2005.
Pérez Soba M. et al., Database and operational classification system of ecosystem service – natural capital relationships, European Commission FP7, 2018.
Pérez-Soba M. et al., Training member states on ecosystem services mapping through hands on workshops, Final report to DG Environment, Alterra Wageningen University and Research centre and ETEH Zurich 2018.
Schröter M. et al., National Ecosystem Assessments in Europe: A Review, “BioScience” 2018 (in press)
Schulp C. J.E. et al., Uncertainties in ecosystem service maps: A comparison on the European scale, “PLOS ONE” 2018 nr 9.
Seppelt R. et al., A quantitative review of ecosystem service studies: Approaches, shortcomings and the road ahead, “Journal of Applied Ecology” 2018 no. 48, p. 630–636.
&cópia de; Wszelkie prawa zastrzeżone przez Konsorcjum BazTech | Baza utrzymywana i dystrybuowana przez ICM UW | System oparty na platformie YADDA default, ver. 1.12.10-SNAPSHOT, rev. 40776 | &cópia de; ICM UW 2005-2018.
Comments
Post a Comment